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Graph Models in Machine Learning

 |n many modern applications, data is acquired on
an irregular network topology.
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Social networks Sensor networks

« Graphs models offer the ability to analyze complex
interactions over network structures.



Inference Problems on Graphs

Node classification Graph classification



Outline

Brief introduction to Spectral Graph Theory

Extending common tools to graph domains:
» Frequency analysis

»  Filtering

» Frames, dictionaries, sparse representations

» Neural networks



Spectral Graph Theory: A Brief Overview
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Graph Laplacian

Weight matrix Degree matrix Graph Laplacian
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Graph Laplacian vs. Laplacian operator

(Lf) (i) =diif(zi) — Y Wi f(z;)
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» Compare to the 2nd derivative kernel: [-1 2 -1]

» ... or the general Laplacian operator A f = div(V f)
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Frequency Analysis via Graph Laplacian

» In fact, Lf'is indeed the graph equivalent of Af

SAT 7 SN oo I A
g [Hein "05, Singer "06]

- Why is the Laplacian important for frequency analysis?

- Check the eigenfunctions of the Laplacian: Af = \f
f(t) _ €th » _A(eth) _ QQGth

- The eigenfunctions of A f are complex exponentials

8



Fourier Bases on Graphs

- The “complex exponentials” in the graph domain
are the eigenvectors of L: [Shuman, 2013]

Lup, = A\pup,  for k=1,...,N

- Compare:

—A(TH) = Q%Y <y Lup =| Afug

frequency frequency

- As Mg increases, U varies more rapidly on the graph.



Fourier Bases on Graphs
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Graph Fourier Transform (GFT)

Classical Signal Processing Graph Signal Processing
« Complex exponentials  Lap. eigenvectors Lup = Apug
plit ol U
* Fourier Transform « Graph Fourier Transform

f@) = (1.6 = [ jwe ™ <t f(A) = (f,ui) Zf vk (x:)

U = [u1 ug - - - UN]: | Fourier basis

* Inverse Fourier Transform  Inverse Graph Fourier Transform

;= %/_OO f(Q)eHd) - f:];f()‘k)uk =Uf
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Filtering on Graphs

- Classical signal processing:

» Filtering = Convolution

- Graph signal processing: Irregular topologies!

» Hard to define convolution in vertex domain...

» Define filtering operation in spectral domain

» Filtering: Multiplication in spectral domain
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Graph Filter Kernels

- Graph kernels in spectral domain
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Lowpass kernel \ : frequency variable Bandpass kernel

How to generate these kernels in the vertex domain?

g(\) : Scalar function L) : Matrix function
g
L= U%\)UT g(L) :UUT
g(A1)
9()\2)

An g(AN)
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Localizing kernels on graph nodes

+ The matrix ¢(L) =U g(A) U" localizes the kernel g(\)
on the graph nodes:

g(A) \

0 0.5 1 1.5 2
A

Lowpass kernel

“Lowpass” graph signal “Lowpass” graph signal
localized at node 1 localized at node 3
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Effect of the choice of graph kernel
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Back to the filtering problem ...

+ Consider the filtering problem:

Filter kernel
Input graph signal o g(\) »  Output graph signal
X Y
oFT § =07 y=Uj 4 IGFT
4 Multiply in spectral domain 0



Example: Low-pass filtering a graph signal

Input graph signal
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Representations for Graph Signals

- Representations in transform domain: GFT
] = U]9]
- Representations on overcomplete sets:

b= D ]H

» Predefined frames: Spectral Graph Wavelets [Hammond,
2011]

» Adaptive representations: Graph Dictionaries [Zhang, 2012],
[Thanou, 2014], ...
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Spectral Graph Wavelets

- Wavelet design problem is formulated in the
spectral domain [Hammond, 2011]:

- Low-pass scaling function: h(\)
- Wavelet-generating kernel: g()\)

- Band-pass wavelet functions: Q(Sj)‘)

Choose kernels to
make total energy
almost flat




Spectral Graph Wavelet Dictionaries

- Recall

g(\) : Scalar function sl g(L) = U g(A) U : Matrix function

Scaling function /1(\) - Wavelet dictionary:
Wavelets g(s;\) D = |h(L) g(s1L) ...g(s;L)]

A

- Graph signals can be sparsely represented over D

=1l D |[=

A /V/ ! o :.:'J:.op '.\". :
ot e U twme Sparse coefficient vector
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Spectral Graph Wavelets: Applications

- Analysis of data on networks: (Movement along
transportation networks, spread of epidemics, ...)

[ H ] [ H —TTI—
.01 0 0.01 -0.02 0 .02

Spectral Graph Wavelets on Minnesota road graph [Hammond, 2011]
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Spectral Graph Wavelets: Applications

- Analysis/Denoising of functional MRI data, based
on brain connectivity network models

Spectral Grap(ﬁ Wavelets on ce(re')ebral cortex [Har%mond, 2011]
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Spectral Graph Wavelets: Applications

- Domain adaptation on graphs:

[Pilavcl, 2019]

Source graph

Target graph
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Adaptive Representations

- Classical sparse signal model: [y] :[ D ][a:‘]
y. Signal,  D: Dictionary, x: Sparse coefficients
» Classical dictionary learning problem:

min ||V — DX|]* +~]| X
D. X

- Dictionary learning for graph signals:
y =D x y: Graph signal, D: Dictionary, x: Sparse coefficients

» Dictionaries must be D =[Dy Dy ... DyJ]
raph topology:
adapted to graph topology D;=U}Y; Ul : j-th subdictionary
Learning D = Learning 2, ‘s
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Graph Dictionary Learning

D =[D; Dy ... Dy D, =UY, U . j-th subdictionary

- Non-parametric dictionary learning [Zhang, 2012]:

» Learn 2.;’s as nonparametric diagonal matrices

- Parametric dictionary learning [Thanou, 2014]:

» Learn polynomial kernels: 2; = g;(\) = Z CVj,lc)\k
k

» Solve problem: I)I(lin |Y — DXH2 -+ ’YH@HQ

st. Dj =Y ajLF, | X[o<T
k
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Dictionary Learning from Incomplete Graph Signals

- Aim: Estimate missing observations of
partially observed graph signals .

o @

Observation: Natural graph signals often conta

concentrated at different parts of the spectrum:

» Example: Meteorological signals (wind spee
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Dictionary Learning from Incomplete Graph Signals

|dea: Learn narrowband kernels that fit to different components of
the signal spectrum [Turhan, 2021]

D =Dy Dy ... Dy
D; =UX,;U" 1 jthsubdictionary

2 = ¢ (A) = :Choose as narrowband Gaussian kernels.
Learn kernel parameters from data

1_5Agr§ph signal illthe graph spectral domgi’n Predeflned d|Ct|0nar|eS
1 O Compare to (e.g. graph wavelets)
~05 ",‘ 1r
. SR B T~
N 5 “' ':I jﬁ “‘c ~—
A (PSS A T 4§ e ﬂ? all, T
0 0.5 1 1.5 OO A\ 10

Frequency
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Dictionary Learning from Incomplete Graph Signals

- Spectrally concentrated graph dictionary learning
algorithm [Turhan, 2021]

A

Learn:
\ [ | po=[p1 ... pg]
[ s = [s1 SJ]

»  Optimization problem:

min |SY =5 D(u, 8) X|I° + X1 +72R(k, 5)



Signal Estimation Performance: Adaptive

vs. Predefined Representations
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More elaborate techniques...?

+ Transform-domain representations: GFT

- Frames, off-the-shelf dictionaries: SGWT

- Adaptive linear representations: Dictionary learning
for graph signals

- Richer nonlinear models?
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Extending neural networks to graphs

- Classical CNN setting:

Zi=c(W X)mp Zy =c(Wa Z,) mp -

X | I s
hf-

Input Conv  Pool Conv Pool FC Output

» Graph CNN setting: Input X has an underlying graph topology

» Document classification in citation networks
» Web page classification
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Graph CNN

4

._Feature vectors Possible outputs:
X =[X: Xy ... Xg] € RVXE o Graph =) » Node class labels
/ \ \ CNN » Graph class labels

Question: How to incorporate the information of the graph
topology in the learnt representation?

Solution: Formulate the convolution operation as a graph filter
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ChebNet [Defferrard, 2016]}

Input graph signals - Feature extraction . Classification - Output signals

e.g. bags of words

Convolutional layers

e.g. labels

Fully connected layers

/
' o
Graph signal filtering \+. Graph coarsening
1. Convolution () 3. Sub-sampling

2. Non-linear activation

! \+/\(\ (o A
) ¢
: |' :
L-> --e
\+./(\‘ 4. Pooling
O:)\1<)\</\Ml_1 .

| ]
Feature extraction step:

X =06 Xl — )= > o, (DE)

- I-th input
J-th learnt Graph filter ¢
feature map P feature map
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ChebNet: Feature Learning

- Hidden layer relation: Y; = ngjj(L)Xf,;
+ Graph filter: ¢! (L) =U g/ ;(A) U" where L=U A U"

- Challenge: Uis hard to compute in big graphs!

» ChebNet solution: Choose polynomial kernels

(A=) 6 A" = ¢"(L)=) 6 L*
k k
- For faster implementation: Use Chebyshev polynomials

" (L) =Y "6, To(L) =p» Lean 0Oi's
k
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ChebNet: Graph Coarsening & Pooling

Input graph signals > Feature extraction > Classification > Output signals

Fully connected layers

e.g. bags of words

Graph signal filtering
1. Convolution
2. Non-linear activation

Graph coarsening

Go —» G —» o

Convolutional layers

e.g. labels

Graph signal pooling = 1-D pooling

10
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Graph Convolutional Networks (GCN)

- Kipf and Welling (2016) simplified the ChebNet further.

- Choosing a degree-1 polynomial:

g"(L)=> 6k Te(L) =» ¢°(L)=0(I+ D '/ *WD~1/?)

~ PaN

. Let A=W 4+1, A=DY2AD"1?

» Atwo-layer GCN becomes
First layer
5 ) |
/ zlsoftmax(A IReLU(AX@O) @1),

Second layer
36




Graph Convolutional Networks (GCN)

- Two-layer GCN [Kipf, Welling 2016]

7 = softmax(A ReLU(O) ')

- Practical impact of architecture:
» Smooth node features across neighbors
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Graph Convolutional Networks (GCN)

- Two-layer GCN [Kipf, Welling 2016]

Z = softmax(A ReLU(A ) ')

- Practical impact of architecture:
» Smooth node features across neighbors
» Extract features using learnt weights
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Graph Convolutional Networks (GCN)

- Two-layer GCN [Kipf, Welling 2016]:

7 = Softmax(A@U(fl@) ')

» Practical impact of architecture:

» Smooth node features across neighbors
» Extract features using learnt weights
» Nonlinear activation function
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GCN: Many recent extensions

Inductive setting [Hamilton, 2017 Graph attention networks
% [Velickovic, 2018]
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concat/avg
> h/
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1. Sample neighborhood 2. Aggregate feature information 3. Predict graph context and label
from neighbors using aggregated information

/-\ Predictions
X1 mp 4 LS
Feature Propagation Nonlinearity
K L sHED \ MJ H® « ReLU(H®))
m ) Yoon = softmax(SH(K_l)@(K))

Predictions

— il - etee

K-step Feature Propagation

X «+ S¥X o .
\ / Logistic Regression

Feature Value: y — X
[ Class +1: . Class -1: . Feature Vector: [g le——u+lj YSGC = softmax (X@)

-1 0




Conclusion

- Analysis of data on graph domains

Irregular topologies =p Nontrivial to extend classical
techniques

Perform operations in spectral domain

» Filtering, Fourier transform

» Linear signal models, sparse representations
» Nonlinear models, graph neural networks

Challenges, new directions
» Big data, large graphs =p Approximate models are necessary

» Generalizability: Unseen graphs, unseen nodes, dissimilar input
topologies, ...
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