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Why we are after self-supervised learning?

- “For AGI we want agents to generalise significantly

beyond the specific tasks that they were trained on. ”

Reality check = very limited supervision

.. but supervised learning is what ML is good at!

Mastering SSL we equip agents with stronger generalization capabilities.

O



Agenda for June, 22nd 2021 Questions?

Q.
1
o

SSL Graph Nets BGRL
e (Modern) SSL Graph Nets as the Self-Supervised Learning
e How BYOL works encoders for graph data on Graphs

e ResNet as encoder
e ImageNet as data
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Computer Vision Goal

Model

Classification

Segmentation

Object detection

Depth estimation

o



Motivation

Encoder

How to train the encoder?

Downstream network

dog

Classification

. Segmentation

Object detection

u Depth estimation

o



Motivation

Labelled, but costly/few data

Unlabelled, free data!

O



Motivation Downstream network

dog Classification

. Segmentation

Object detection

“ Depth estimation

Image Encoder

N J | - J

Y Yo
BYOL ‘ Self-supervised Supervised @

Free unlabeled data Few labeled data
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Intuition: Two different views (augmentations) of the
same picture should be predictive of each other.

(b) Crop and resize  (c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)

(f) Rotate {90°,180°,270°} (g) Cutout (h) Gaussian noise (i) Gaussian blur (j) Sobel filtering

Figure from SimCLR

A view of a dog is still a dog, i.e. semantic information is invariant to transformations.

1SimCLR: Chen et al., A simple framework for contrastive learning of visual representations. ICML. 2020

O



BYOL main intuition

Image Views

Predict?

o



BYOL main intuition

Image Views Encoder Predictor

-{ 8@8 }3@3 (“Prediction )
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BYOL main intuition

Image Views Encoder Predictor

-{ 8@8 }3@3 (“Prediction |
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BYOL main intuition

Image Views

Encoder Predictor

Rgnglorp [ Prediction ]
Initialization
Regress
Random
Initialization [ Target ]
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BYOL main intuition

Image

Views Encoder Predictor

.{ @ [ Prediction ]

Regress

Random
Initialization [ Target ]

o



BYOL main intuition

Image Views

Encoder

@

lCopy

@

Predictor

[ Prediction ]

[ Target ]
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BYOL main intuition

Image Views Encoder Predictor

B - o

Regress

| —~ Target
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BYOL main intuition

Image Views Encoder Predictor

[ o=

Copy

Regress
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BYOL main intuition

Image Views Encoder Predictor
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BYOL main intuition

Image Views

Encoder

b4

1Copy

b4

Predictor

[ Prediction
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BYOL Architecture

i

Online network
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BYOL'’s highllghts Image

Key ingredients:

e Image transformations.
e Target network.

e Additional predictor on top of online network.

Interest of the method:

e Simple training procedure.

e No negative examples |[details 3 slides later].

e Work at the embedding level, e.g. no-pseudo labels.

Encoder

Predictor

Regress

O
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2 ’ Wait, there has been
life before BYOL!

Slide contributions from Oriol Vinyals and Aaron van den Oord “"



Self-supervised learning

TOP 1 ACCURACY
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https://paperswithcode.com/sota/self-supervised-image-classification-on
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Rotation lRevNelSOi»_v)

Colorization-{AtexNet)
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Jul'16

Jan'17 Jul'17 Jan'18 Jul'18 Jan'19 Jul'19

Other models  -#- State-of-the-art models

Generative vs. Predictive
Contrastive (Positives / Negatives) - [next slide]

O

O

Positives “corrupted” ... otherwise it's too easy
Negatives to rescue

SimCLRv2 (ResNet-152 x3. SK)

SImCLR (ResNet-50.4x)—®

Jan'20

Jul'20

O



Self - Supervised Learning / Contrastive Losses

Data {x}; task _spec

Model Yy~ fG(x)

G (folaug(z;))T foaug(z;)))
Zl gZx/exp folaug(z,))T folaug(z')))

Loss

Optimisation 0" = arg mgxx ,C(@)

O

NCE, Gutmann, Hyvarinen, 2010; Context Prediction, Doesrch et al, 2015; CPC, van den Oord e tal, 2018; BERT, Devlin et al, 2018; SImCLR, Chen et al, 2020



Encoder |Predictor

BYOL — Negatives gone! Image

CONCEPTUAL

e No need to define what is “not an object”
o for some domains difficult
o default option may be wrong

Regress

SCALABILITY

e for “not an object” we need large batches
e for some domains (graphs..) can be quadratic in sample size

ROBUSTNESS [result in the next slides]

e to augmentation
e to batch size

PS: Prior to BYOL, negatives absent in DeepCluster. b’
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Linear Evaluation Protocol on ImageNet

4 )

Step 1: Train a “representation” on ImageNet
without any labels.

Step 2: On top of the representation, train a
linear classifier on ImageNet with label information.

- J

ResNet

Linear

Classifier

ResNet

O



Linear Evaluation Performance on ImageNet
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Linear Evaluation Performance on ImageNet

80 . .
S.up. (4x) Note: these supervised

Sup. (2x baselines are from
p'o/ SImCLR (Chen & Hinton,
SU/ ICML 2020)

o

SimCLR (4X)
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SimCLR (2 X) CPCv2: van den Oord et al., Representation learning with
contrastive predictive coding. 2018
InfoMin AMDIM: Bachman et al., Learning representations by maximizing
mutual information across views. 2019
CMC: Tian et al.Contrastive multiview coding. 2019.
CMC CPCv2-L MoCo: He et al, Momentum contrast for unsupervised visual
MoCov2 representation learning. 2019
InfoMin: Tian et al, What makes for good views for contrastive
learning. 2020
MoCo MoCov2: Jain et al., Improved baselines with momentum
SimCLR AMDIM contrastive learning. 2020
SimCLR: Chen et al., A simple framework for contrastive learning
of visual representations. 2020
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Linear Evaluation Performance on ImageNet

80 . .
Sup. (4x) Note: these supervised

L] baselines are from

e
2 '.(Z/X/BYOL (4x) SimCLR (Chen & Hinton,
°
S:/B VoL (2%) ICML 2020)

SimCLR (4%)

J
(o)

~J
N

74
SimCLR (2 X) CPCv2: van den Oord et al., Representation learning with
contrastive predictive coding. 2018
InfoMin AMDIM: Bachman et al., Learning representations by maximizing
mutual information across views. 2019
CMC: Tian et al.Contrastive multiview coding. 2019.
CMC CPCv2-L MoCo: He et al, Momentum contrast for unsupervised visual
MoCov2 representation learning. 2019
InfoMin: Tian et al, What makes for good views for contrastive
learning. 2020
MoCo MoCov2: Jain et al., Improved baselines with momentum
SimCLR AMDIM contrastive learning. 2020
SimCLR: Chen et al., A simple framework for contrastive learning
of visual representations. 2020
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Further comparison with SimCLR

BYOL outperforms other self-supervised learning methods on the following benchmarks:

e Semi-supervised learning on ImageNet
e Fine-tuning on small classification datasets (such as CIFAR or Flowers)
e Transfer tasks when pretraining on Places365 instead of ImageNet

Summary: BYOL vs. Contrastive methods:

e BYOL is less sensitive to the choice of image transformations
e BYOL is more robust to smaller batch sizes

The code and checkpoints are available:
https://github.com/deepmind/deepmind-research

O


https://github.com/deepmind/deepmind-research

Sensitivity to augmentation choice

&

= 0@ —— BYOL
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Transformations set

BYOL is predictive rather than contrastive = lower sensitivity to transformation set.
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Self-Supervised
Learning on Graphs

Shantanu Thakoor, Corentin Tallec, Mohammad Gheshlaghi Azar, Mehdi Azabou,
Eva L Dyer, Remi Munos, Petar Velickovi¢, Michal Valko

Thanks to Petar Velickovi¢ for help with slides!
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Graphs are Everywhere!

e Data with special structure:
o Nodes = entities
o Edges = connections between nodes
o Graphs = collection of nodes with edges

o



Traffic maps are graphs!

e Transportation networks (e.g. Google Maps) naturally modelled as

&

\/

7

o Nodes as intersections, edges as roads

7

L,’T%b—c

o Many natural node/edge-level features in this datal!

o Possible task of interest: ETA prediction



Molecules are graphs!

e A very natural way to represent molecules
o Atoms as nodes, bonds as edges
o Features such as atom type, charge, bond type...
o Possible task - predict whether molecule inhibits diseases

O




How to learn from graphs?

G R S B e R i N A R G Rt R o G FLi e

O



Graph Neural Networks!

G R L B e Rl i N A R G Bt Ao o G FLi e

T e e M el Gt Bt Mk T Tl o et ? K

O



Node-level representations

Node classification

Z; — f(hi)

O



Graph-level representations

Node classification

Z; — f(hi)

Graph classification

zg = f (Gaiev hi)

O



Edge-level representations

Node classification

Z; — f(hi)

Graph classification

zg = f (GBiEV hi)

Link prediction
z;; = f(hi, hj, e;;)

O



Graph Neural Networks

e What do we want in a neural network acting over graphs?

e Desiderata:
o Use graph structure - node/edge features,
connections between nodes
o Not sensitive to order in which node / neighbors are
processed - permutation (equi/in)variant

e Starting point: let’s take inspiration from image domain! &)



Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
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Convolutional Neural Networks
e Translational invariance

e Patterns are interesting irrespective of location in image
e Locality: neighbouring pixels affect more than distant

e |mages are essentially graphs
o Pixels = nodes arranged in grid connectivity pattern
o What about arbitrary graphs? o)



Graph Convolutional Networks (GCNs)

e Features of neighbours aggregated with fixed weights, c;

h; = ¢ | xi, P cijib(x;) Xa

JEN; \

e Usually, the weights depend directly on adjacency matrix
o ChebyNet (Defferrard et al, NeurlPS'16)
o  GCN (Kipf & Welling, ICLR"17)
o SGC (Wu et al, ICML19)

~

e Useful for homophilous graphs and scaling up Xd

o When edges encode label similarity

()
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Convolutional
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O



The three “flavours” of GNN layers

Xa Xa
Cha (jbl)
\Xb < Che Xe

/de/ \Cbe
X X, X4

Convolutional

h; = ¢ | xi, P cijv(x;)
JEN;

.......... Xa -
gébg\(:lﬁb
Xb ( .......... Ope XC
K . A
G,
------- > (pd <" age\
%) X,
Attentional
JEN;

> 1M < My
e
Message-passing
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Graph Representation Learning

e Goal: Learn meaningful node representations without supervision

o Why?
o Unlabeled data cheaper
o  Pre-training for downstream tasks
o Auxiliary signal for semi-supervised training

Input Graph Encoder, e.g. GCN Self-Supervised Embeddings
, - :{{
—) .. . i 5
P w
. }:, e® }::vo .;“.;::.' ° . .."..

O



Early methods: Random-walk objectives

e What makes an embedding “good"?
o Graphs carry interesting structure!
o Good node representations should preserve it.

e Simplest notion of graph structure is an edge.
o Features of nodes i and j should be predictive of existence of edge (i, j)!
o Generalize slightly: nodes i and j co-occur in a short random walk
o Very similar to NLP methods such as word2vec

e Dominated unsupervised graph representation learning prior to GNNs!
o DeepWalk, node2vec
o Do not scale to large graphs easily, do not work with GNN encoders

O



Current hot methods: Contrastive

e Contrastive methods
o Push together similar objects (positive examples)
o Pull apart dissimilar objects (negative examples)

N\attract -~
repel

e Aim: stop contrasting dissimilar objects!

.. but why?

O



Drawbacks of Contrastive Methods

e Case Study #1: Deep Graph Infomax (DGlI)
o Contrast against “negative” graph

Input node embeddings % Inout KN “Negative” node embeddings

‘90; global @Q

Input graph Corrupted graph

Problem #1: Hard to define negative examples

e Many datasets = single graph, no “other” graph

o



Drawbacks of Contrastive Methods

e C(Case Study #2: GRACE
o Positive example = same node across views
o Negative example = every other pair

Ae®
o CO° oS
\Lcﬁ\\‘\;\c \c-.\\\“\' /\
X 0O N T > )
Mo - i
= ""7/

/6=(X,A) 4 ‘j;-’

Re P u,
1”’.1 v mo‘c\* ; ‘.
at Nog ; ey ) o 0
".‘7101-(._\_ Ga=(X2,A,)

Problem #2: All-vs-all contrastive scales quadratically

e Subsampling uniformly is bad @
e Choosing smartly is hard
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Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o Given a graph

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o Generate 2 augmented views
o Augmentations = transformations embeddings invariant to

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o Two encoders: 0 online, @ target
o Compute h, h, respectively

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o h, trained to be predictive of h,

o pylh) =2

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
oz pushed towards h,

N i=0 12 lllH ezl

O



Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o Flow gradients through 6

(Z]_,;&]_)

% |
_________ lD
2 Za,0H b
N i=0 12 lllH ezl
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Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o Block gradients through @

(Z]_,;&]_)

% |
_________ lD
2 Za,0H b
N i=0 12 lllH ezl
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Bootstrapped Graph Latents (BGRL)

e Bootstrap embeddings from each node = no negative examples
o @ updated as EMA of 0

(Z]_,;&]_)

% |
_________ lD
2 Za,0H b
N i=0 12 lllH ezl
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Bootstrapped Graph Latents (BGRL)

e Adaptation from BYOL - no projector network

AAAAAA ZvAy
P

________________ .
If

N i=0 12 lllH ezl

e Undesirable/trivial solutions exist (e.g. 0 = @)
o Not obtained as (0, @) update does not minimize any loss @



Graph Augmentations
e Design decision, perturbations that do not change semantics

e Forimages, intuitive to design
o Flipping/cropping/color distortions typically not change class

e For graphs, very unintuitive!
o Perturb whole graph
o Butlearn embeddings for nodes
o It would be like augmenting an image but learning pixel-level!

e So simple, cheap augmentations done:
o Randomly drop certain edges
o Random node feature masking
o Not perfect, still open area of research!

O
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Experimental Setup

Node classification, GRACE current best

Linear evaluation protocol

Frozen Encoder Task-Specific

Linear Model
:)

Encoders: Graph Convolutional Networks (GCNs)
BGRL predictor: MLP

P

Simple augmentations, masking with fixed probability

o



Experimental Setup

e Report results relative to randomly initialized GCN

e \Very strong baseline!
o Random GCNs = good inductive bias
o Linear classifier on top works as normal
o Surpasses pure supervised in some cases!

o



Datasets

e Transductive tasks:
o Single graph, all nodes known during training, labels
only available for training nodes

o WIikiCS, Coauthor CS/Physics, ogbn-arXiv: citations
networks, classify paper topic

o Amazon Computers/Photos: co-purchase graphs,
classify product type

e Inductive tasks:
o Dataset of many graphs, train on some/test on others
o PPI: dataset of protein-protein interactions, predict
biological properties

O



Experimental Results

e Citations/Co-purchase graphs, O(10k) nodes — quadratic possible

Accuracy Relative to Random Embeddings

B DGI B GRACE BGRL [ Supervised

I I I (;R ACE OOM

WikiCS Amazon Computers Amazon Photos Coauthor CS  Coauthor Physics

4

o

'
N

e Not only is BGRL >= other methods, memory usage is 5-10x @
smaller



Scaling Up to Larger Graphs

e OGB arXiv dataset, 170k nodes
e Subsample k negatives per node for GRACE
o k=2 = BGRL in asymptotic memory

Accuracy Relative to Random Embeddings
B DGI B GRACE(k=2) k=8 | k=32 [ k=2048 [ BGRL [ Supervised
5

-10

Validation Test

Method

O



Pushing Performance on PPI

e PPI: biological networks of protein interactions, O(50k) nodes
o Huge gap between self-supervised and fully supervised
o Graph Attentional encoders

0.700 Grace sampling 16

st Grace sampling 32

0.675 2000 Grace sampling 64
Previous SSL Grace sampling 128
SOTA Grace sampling 256

0.650 Grace sampling all
BGRL

1500

1000

Grace sampling 16

Grace sampling 32

Grace sampling 64

Grace sampling 128 500
—— Grace sampling 256
—— Grace sampling all
—— BGRL

0 2500 5000 7500 10000 12500 15000 17500 0 -6 -5 ) -3
Training Step Entropy




Unlocking performance on 1000x larger dataset

KDD Cup 2021
OGB-LSC challenge,
dataset with 240M
nodes / 1B edges

BGRL was key to
DeepMind team
awarded as Top-3

BGRL works even with:
o 1000x larger data
o Expressive MPNNs
o Mixing with

supervised signals

Accuracy

0.730 A

0.728 A

=
~
N
o

0.724 A

0.722 A

0.720

MAG240M-LSC Classification

— bagrl
——— grace
fully_supervised

10000

20000 30000
Training Step

40000

50000

o



Conclusions

e Main takeaways:
o BGRL competitive with contrastive methods without
negative examples
o Huge wins in memory and performance in some cases
o Likely to be more easily applied to larger graphs
without design choices

e Future directions:
o Naturally extends to learning graph-level embeddings
o Experimenting with stronger encoder architectures
o Research into stronger graph-based augmentations

o
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Thank You!

... Questions?

O



