
Yüksek Başarımlı
Hesaplama ve Yapay Zeka

için Yazılım Çözümleri

Asst. Prof. Didem Unat

Department of Computer Engineering
Koç University

2

2006
Graduated from

Boğaziçi University

2012
PhD at

University of California,
San Diego

Didem Unat?

3

2012-2014
Luis Alvarez Postdoctoral

Fellowship

Lawrence Berkeley National
Laboratory

2014 -
Koç University

Didem Unat?

4

1 Post-doc

6 PhD Students

11 MSc Students

30+ Publications

ParCoreLab

Turkey, Pakistan, Iran, Indonesia, Albania, Kazakhstan, Tanzania, Palestine ...

Collaborations with Universities, Research Labs and Industry

5

1.5 Million Euros

First ERC grant received
from Turkey in

Computer Science

6

Supporting top
researchers anywhere in

the world

BeyondMoore addresses the most timely and challenging issue of computing.

How to efficiently and productively program
future computers in Post-Moore’s Era?

Aims to solve the software-side
of Post-Moore’s crisis

This project has received funding from the European High-Performance Computing Joint
Undertaking under grant agreement No. 956213.

An Optimization and Co-design
Framework for Sparse

Computation

8

2.6 Million Euros

Project Coordinator in an
European consortium with 6

partners

 SparCity aims at creating a supercomputing framework that will provide

efficient algorithms and coherent tools designed for sparse computations,

while also opening up new usage areas in graph analytics.

Yapay Zeka için HPC Çözümleri

10

DL Needs Throughput-Oriented Architecture

● DL models are compute
intensive

● GPUs played major role in the
renaissance of DL
○ Order of magnitude faster

training
○ Many cores
○ High bandwidth memory

11

Memory Bottleneck

• Accelerators (GPUs) have a limited
device memory
– GPU V100 comes with 32 GBs
– Technology limitations and price

12

Memory Bottleneck

• DNNs grow in size
– Higher accuracy on more

complex tasks (Transformers)
– Faster training

• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101

13

• Accelerators (GPUs) have a limited
device memory
– GPU V100 comes with 32 GBs
– Technology limitations and price

Memory Bottleneck

• Models barely fit into single GPU memory
– Use small batch sizes

• Resource underutilization
• Models do not fit into single GPU memory

14

• Accelerators (GPUs) have a limited
device memory
– GPU V100 comes with 32 GBs
– Technology limitations and price

• DNNs grow in size
– Higher accuracy on more

complex tasks (Transformers)
– Faster training

• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101

Related Work

● (1) Single device based solutions
○ Memory optimization techniques (Gradient Checkpointing)
○ Utilizing the host memory (Unified Memory)

● (2) Distributed training
○ Data parallelism

■ Doesn’t address the memory issue

○ Model parallelism (Gpipe, Pipedream, and others)
■ Model-specific, not general
■ Accuracy issues, requires manual tuning/implementations

○ Hybrid parallelism (Mesh-TensorFlow)
■ Specific, requires manual tuning

15

Our Approach: ParDNN

16

• Generic
– Zero dependency and requires no knowledge about

the DL aspects of the DNN models
• Automated, non-intrusive

– Requires no modification of the model or operation
kernels

• Works at system-level
– Operates on computational graph

Computational Graph

● Operations in the graph
represent one step

○ Both forward pass and back
propagation are in the graph

● The graph is static

○ Constructed before running and
stays the same

○ There are dynamic cases

● The graph is acyclic

17

Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n,

computation time

● E
○ e ∈ E: Dependency.
○ c(e): cost of e,

communication time
○ Defines the execution

order

18

Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n,

computation time

● E
○ e ∈ E: Dependency.
○ c(e): cost of e,

communication time
○ Defines the execution

order

19

How to partition this task graph among multiple GPUs?
● obey the memory constraints,
● reduce communication,
● minimize execution time

Real DNN Graphs
● Number of operations reaches hundreds of thousands,

may scale up to millions.
○ Another objective: Low complexity is necessary

20

Our Approach: ParDNN

21

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

● Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized
○ Communication time is minimized
○ Computation loads are balanced

22

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

● Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized
○ Communication time is minimized
○ Computation loads are balanced

● Step 2: Meet the memory consumption
constraints
○ If each partition meets the device memory

constraints

■ Done.

○ Else
■ Handle the memory overflow while

maintaining locality-parallelism trade-off.

23

ParDNN Algorithm
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Stage1

Stage2

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages

24

ParDNN Algorithm
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Stage2

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing

■ Gets smaller instance representation
■ Obtaining coarser view
■ Capturing costly communications

Slicing

25

Graph Slicing

● Obtain K critical paths of the graph
○ Get the critical path

■ primary cluster
○ Remove its nodes & incident edges

● Until the graph has no more nodes
○ Find the heaviest cluster

■ secondary cluster
○ Remove its nodes & incident edges

In the figure, pink and green paths are primary clusters
Yellow, blue and purple nodes are secondary clusters

26

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Stage3

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing

○ Stage 2: Mapping, merge
secondary clusters with primaries

in a way that:
■ Balances computational loads
■ Minimizes communication

27

Mapping

● Initial merging
○ Merges secondary clusters that have no parallelism

gain
● Level-aware load balancing

○ Pick a secondary cluster and merge it with one on the
primaries such that
■ This primary has the least load within its span
■ The incurred communication is minimized.

28

Mapping

Initial
merging

Load
Balancing

VS

State-of-the-art
load balancing

algorithm by
others

29

ParDNN Algorithm Overview
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Refinement

● To achieve both
○ Good quality partitions
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping
○ Stage 3: Refinement

■ Enhance partitioning quality
● At the cluster level
● At the node level

■ Swap paths and nodes between

primaries
30

Refinement

● Path swapping:
○ Swap a cluster c with:

■ c’ within the span of c, such that swapping c with c’ improves the
quality.

● Node switching:
○ Focus on communication edges
○ When there are many heavy communications:

■ Some may fall outside the clusters, thus participate in creating
heavy critical paths.

○ In newly formed critical path.
■ Switch such node placements if this shortens it.

31

Step 2: Meeting Memory Constraints
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Emulator

Stage 3

Refinement

● Step 2: Meet the memory
consumption constraints
○ Stage 1: Emulate Tensorflow

scheduler
■ Get the node’s expected

scheduling times
■ Memory allocation and

deallocation patterns
Stage 2

32

● Assume a schedule:
○ A, C, D, E, F, B, G.

● Peak memory reserved:
○ 1 + 6 + 1

■ = 8

Memory consumption

33

● Assume another schedule:
○ A, B, C, D, E, F, G.

● Peak memory reserved:
○ 6 + 1 + 1 + 2 + 1 = 11

● It affects as well when having
multiple workers.
○ When the data is sent from one to

another.

Memory consumption

34

Step2 Stages
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Simulation

Stage 3

Refinement

● Stage 1: Emulate Tensorflow
scheduler

● Stage 2: Modeling memory
consumption
○ Derive the memory consumption

on a certain device at a certain
point in time

○ Calculate memory potentialsModeling
memory

consumption

35

Step2 Stages
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Step 2

Slicing

Mapping

Scheduler
Simulation

Addressing
Overflow

Refinement

Modeling
memory

consumption

● Stage 1: Emulate Tensorflow
scheduler

● Stage 2: Modeling memory
consumption

● Stage 3: Address the memory
overflow
○ Which nodes to move?
○ Where to move?

36

Addressing Memory Overflow

● Each overflow point can be 0-1 min knapsack
○ Move a set of nodes from the overloaded part

■ Summation of their memory potentials at the overflow time ≥
Overflow

○ The cost of a move is how much it affects the existing
partitioning:
■ Incur the least possible perturbation on Step 1 results

○ Solved greedily
○ Move the node which , per a memory unit, has the least

computation cost and incurs the least communication when
moved.

37

Results

38

Models and Datasets
• We have experimented with 5 models with 2 different

configurations (large and very large)

39

Comparison with Mesh-TensorFlow

40

The number in the brackets is the batch size.
Speedup over Mesh-TensorFlow developed by Google using Transformer Model

Comparison with Critical Path Methods

41
 R. Mayer, C. Mayer, L. Laich, The tensorflow partitioning and scheduling problem: It’s the critical path! in: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep

Learning, 2017, pp. 1–6.

Comparison with Gradient Checkpointing

42

● ParDNN is better in most of the cases.
● Checkpointing Fails to fit the model in some cases

Comparison with UVM

43

Results (Training Speedup)

44

Better resource utilization → Superlinear speedup up to 4 GPUs in all cases.

Results (Batch size scaling)

ParDNN enables working with larger data, e.g. pushing larger batches, using
certain number of workers.

45

Time Complexity
The running time of our algorithm in all the experiments ranges from

18 to 117 sec

46

Summary
• We addressed memory constrained DNN models on multiple GPU

devices
– Elegant, non-intrusive and model agnostic approach
– Two step algorithm design provides efficiency and low overhead
– Compared to similar approaches, our results are better or provides

qualitative advantages
– Paper is on arxiv: https://arxiv.org/abs/2008.08636

– Published in Elsevier Parallel Computing

This project is funded by Tübitak 118E801.

47

https://arxiv.org/abs/2008.08636

Outlook
Parallel systems are here

• Mostly homogeneous or heterogeneous (CPU + GPU) systems

• As a community we have done a good job in software preparedness for those

systems

Post-Moore’s Era (2025 onward) will bring more heterogeneity and

hardware specialization

• Low precision units, AI units, GPUs, FPGAs, QCs co-exist in a large-scale

system.

• Addressing programming issues in those systems will be more challenging.

48

https://parcorelab.ku.edu.tr/

https://parcorelab.ku.edu.tr/

