Yiiksek Bagarimli
Hesaplama ve Yapay Zeka
icin Yazilim Cozumleri

W2, KOC
%> UNIVERSITESI

I/

b eyon d Asst. Prof. Didem Unat
moore .%ﬂ Department of Computer Engineering

Ko¢ University

2006 2012
Graduated from PhD at
Bogazici University University of California,

San Diego

Didem Unat?
— A
:r}| g

BERKELEY LAB

St

MARIE CURIE

4

S
B Q;(. BILIM AKADEMISI

Lawrence Berkeley National Laboratory

THE

ROYAL
SOCIETY

2012-2014 2014 -
Luis Alvarez Postdoctoral Kog University
Fellowship
&’é& KOG
Lawrence Berkeley National SV EIaHIY

COMPUTING LABORATORY

Laboratory

ParCorelab

1 Post-doc

6 PhD Students
11 MSc Students

30+ Publications

Turkey, Pakistan, Iran, Indonesia, Albania, Kazakhstan, Tanzania, Palestine ...

[l Our Collaborators
[l Turkey, Kog University

Created with mupcrlarl.g

European Research Council

Established by the European Commission

1.5 Million Euros

Supporting top
researchers anywhere in
the world

2025

Moore’s Law
ends

1st Exascale
Supercomputer

On-chip Memory

(Core)(Core)(Acc)tb

[Network-on-Chip j
(Core)(Core)(Acc)4:9
Memory
=

Far Memory

2023

Acc

i
(ee)

European
processor

initiative
beyond
moore

2020 Project kicks off

Post Moore

First ERC grant received
from Turkey in
Computer Science

1/3rd of Top 500

Supercomputers - - >
are heterogenous
Network-on-Chip

NVIDIA.
Homogeneous CUDA
Multicore Era First release

2025

Moore’s Law
ends

1st Exascale On-chip Memory

Supercomputer
Moore’s Law 2010 = g
begins Core) | _Core GPU-Based s
- Supercomputer 5
Network-on-Chip ranked #1 fiid
Core Core S OpenAcc OpenMP 2023
e ——— European
s releases offload ?m;’ dF:eIs e processor
\ y 4 model standard initiative Post Moore

BeyondMoore addresses the most timely and challenging issue of computing.

How to efficiently and productively program
future computers in Post-Moore's Era?

Aims to solve the software-side
of Post-Moore’s crisis

HENER B
HEE

H [k

An Optimization and Co-design
Framework for Sparse
Computation

2.6 Million Euros

Project Coordinator in an 5 m
European consortium with 6 ** : ,
partners A oy
This project has received funding from the European High-Performance Computing Joint 8

Undertaking under grant agreement No. 956213.

SparCity aims at creating a supercomputing framework that will provide
efficient algorithms and coherent tools designed for sparse computations,

while also opening up new usage areas in graph analytics.

%“',g'é KOC ..Sabanci . N
7N UNIVERSITY Universitesi N
MNM
@ in%c id MUNICH NETWORK MANAGEMENT TEAM

GRAFHCORE [simula. research laboratory]

Yapay Zeka icin HPC Cozumleri

10

DL Needs Throughput-Oriented Architecture

e DL models are compute

intensive

® GPUs played major role in the

renaissance of DL

@)

©)
©)

Order of magnitude faster
training

Many cores

High bandwidth memory

Core

L1 Cache

Core

L1 Cache

L2 Cache

L3 Cache

CPU

Core

L1 Cache

Core

L1 Cache
L2 Cache

Memory Bottleneck

e Accelerators (GPUs) have a limited

device memory
— GPU V100 comes with 32 GBs
— Technology limitations and price

12

Memory Bottleneck

e Accelerators (GPUs) have a limited * DNNs grow in size
device memory — Higher accuracy on more
— GPU V100 comes with 32 GBs complex tasks (Transformers)
— Technology limitations and price — Faster training

e Wide ResNet vs ResNet
e \WRN-16-8 >> ResNet-101

13

Memory Bottleneck

e Accelerators (GPUs) have a limited * DNNs grow in size
device memory — Higher accuracy on more
— GPU V100 comes with 32 GBs complex tasks (Transformers)
— Technology limitations and price — Faster training
* Wide ResNet vs ResNet
‘ * WRN-16-8 >> ResNet-101

 Models barely fit into single GPU memory
— Use small batch sizes
* Resource underutilization
 Models do not fit into single GPU memory

14

Related Work

e (1) Single device based solutions
o Memory optimization techniques (Gradient Checkpointing)
o Utilizing the host memory (Unified Memory)

® (2) Distributed training

o Data parallelism
m Doesn’t address the memory issue
o Model parallelism (Gpipe, Pipedream, and others)
m Model-specific, not general
m Accuracy issues, requires manual tuning/implementations

o Hybrid parallelism (Mesh-TensorFlow)

m Specific, requires manual tuning
15

Our Approach: ParDNN

* Generic
— Zero dependency and requires no knowledge about
the DL aspects of the DNN models
 Automated, non-intrusive
— Requires no modification of the model or operation
kernels
* Works at system-level
— Operates on computational graph

16

Computational Graph

Deep Learning Computational
@ Model @ Graph e Operations in the graph
§ SRR O :> /\ :> represent one step
=9 e 5 e o Both forward pass and back

propagation are in the graph

Python, C/Cr Java 1" ® The graph is static

PR
O Constructed before running and
Nt stays the same
! o There are dynamic cases

e The graph is acyclic

17

Computational Graph

Deep Learning Computational
Model Graph
® w @ i ® G(V,E): Task graph

: Task.
e .\@/@ Z a/(f):vwl?gsht of n,

Python, C/C++, Java Mg computation time

/l\ e F
Sl %@/@ e € E:Dependency.

c(e): cost of e,
J’ communication time
@ o Defines the execution
order

O O

18

Computational Graph

Deep Learning Computational

odel Graph
®) @ i ® G(V,E): Task graph

VU

= /A = P\ ¢V
e .\@/@ 2 a/(f)vwl?;t of n,

Python, C/C++, Java Mg computation time

/l\ e F
Wb %@/@ o e € E:Dependency.

| o c(e): cost of e,
communication time

- : , @ o Defines the execution
How to partition this task graph among multiple GPUs? order

® obey the memory constraints,
® reduce communication,
® minimize execution time

19

Real DNN Graphs

e Number of operations reaches hundreds of thousands,

may scale up to millions.
o Another objective: Low complexity is necessary

Model Acronym #layers HSD SL #Parameters | #Graph Nodes Dataset
Recurrent Neural Network Word-RNN 10 2048 28 0.44 billion 11744 Tiny: Shakespeare [73]
for Word-Level Language [51] Word-RNN-2 8 4096 25 1.28 billion 10578 P laxespes -
#Layers CHSD ED
Character-Aware Char-CRN 8 2048 15 0.23 billion 22748 R
Neural Language Models [26] [Char-CRN-2 32 20438 5 .09 billion 36663 Eenn Trechank (ET8) [29)
#Conv. Layers [65] #RU WEF
. : WRN 610 101 14 1.91 billion 187742
i T , =
Wide Residual Network [64] WRN 304 0 73 377 billion TOTA2 CIFAR100 [28]
#Layers HSD MD
Transiomer [54] TRN 24 5120 2048 | 1.97 billion 80550 IWSLT 2016
] TRN-2 BE 8102 | 2048 | 5.1 billion 160518 German—English corpus [6]
#Hidden Layers ES
s E3D 320 5 0.95 billion 55756 ¢ g
Eidetic 3D LSTM|58] 3D 310 z > 7 billion 33736 Moving MNIST digits [50]

20

Our Approach: ParDNN
Deep Learning Computational Cost Model ParDNN
Model Graph ~
@A . @ 3/ Offline Profiling @ @
Riaior :> / \ :> Compute Times ‘:> R
/l l Communilcatlf)n Times .\@/.
(estimation)
Python, C/C++, Java N —— I /@\
cheduler Emulator ,
I
/'\ Memory Consumption @\@/E
\l/ Estimations 3 /"
|) . 2
\ @Mapping @

[Deep Learning Distributed Execution Engine = : /

| Host | Device || Device || Device || Device |

21

ParDNN Algorithm Overview

ParDNN Algorithm

Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized

o Communication time is minimized

o Computation loads are balanced

22

ParDNN Algorithm Overview

ParDNN Algorithm

Step 2

e Step 1: Given K devices, partition the graph

into K partitions so that execution time is
minimized

o Communication time is minimized

o Computation loads are balanced

Step 2: Meet the memory consumption

constraints
o If each partition meets the device memory
constraints
B Done.
o Else
m Handle the memory overflow while
maintaining locality-parallelism trade-off.

23

ParDNN Algorithm

ParDNN Algorithm

® To achieve both
o Good quality partitions
o Reasonable runtime

e Step 1is divided into 3 stages

24

ParDNN Algorithm

e To achieve both
o Good quality partitions

o Reasonable runtime
e Step 1is divided into 3 stages:

&
=
S o Stage 1: Slicing
< m Gets smaller instance representation
% . m Obtaining coarser view
% a N m Capturing costly communications
o
<)

25

Graph Slicing @

e Obtain K critical paths of the graph !1 !1 @

O Get the critical path @ @
m primary cluster W

o Remove its nodes & incident edges

e Until the graph has no more nodes LN
o Find the heaviest cluster
m secondary cluster i
o Remove its nodes & incident edges 3 /4
In the figure, pink and green paths are primary clusters @

Yellow, blue and purple nodes are secondary clusters 0

& -

ParDNN Algorithm Overview

® To achieve both
o Good quality partitions

Step 1 o Reasonable runtime

e Step 1is divided into 3 stages:
o Stage 1: Slicing

[} O Stage 2: Mapping, merge
secondary clusters with primaries

m Balances computational loads
[1 m Minimizes communication

=
=
=
S
28
<
Z
P
=
©
o

27

Mapping

e |Initial merging
o Merges secondary clusters that have no parallelism
gain
e Level-aware load balancing
o Pick a secondary cluster and merge it with one on the
primaries such that
m This primary has the least load within its span
m The incurred communication is minimized.

28

Mapping

: 1
1 . 1
G |
1,3
\ e Load \ e State-of-the-art\ e
Balancing load balancing

@ algorithm by @

0 0 0 others io

ParDNN Algorithm Overview

® To achieve both
o Good quality partitions
o Reasonable runtime

e Step 1is divided into 3 stages:
o Stage 1: Slicing

=
e
g e
o
S
<
Z
Z
(M)
| -
©
(ol

() o Stage 2: Mapping

- g o Stage 3: Refinement

[) m Enhance partitioning quality
N) e At the cluster level

® At the node level
m Swap paths and nodes between
primaries
30

e Path swapping:

o Swap a cluster ¢ with:
m C within the span of ¢, such that swapping ¢ with ¢’ improves the
quality.

e Node switching:

o Focus on communication edges

© When there are many heavy communications:
m Some may fall outside the clusters, thus participate in creating
heavy critical paths.
o In newly formed critical path.

m Switch such node placements if this shortens it.
31

ParDNN Algorithm

Step 2: Meeting Memory Constraints

N

Scheduler
Emulator

-

AV

>

4

-

AV

N

4

e Step 2: Meet the memory
consumption constraints
o Stage 1: Emulate Tensorflow

scheduler

m Get the node’s expected
scheduling times

m Memory allocation and
deallocation patterns

32

Memory consumption

® Assume a schedule:
o ACD,EFB,G.
® Peak memory reserved:

o 1+6+1
m =8

Memory consumption

e Assume another schedule:
o ABCD,EFG.

® Peak memory reserved:
o 6+1+1+2+1-=11

e |t affects as well when having
multiple workers.

o When the data is sent from one to
another.

Step?2 Stages

p S
L J e Stage 1: Emulate Tensorflow
[| scheduler

E < J e Stage 2: Modeling memory

<_§, i) consumption

<Z’: : : o Derive the memory consumption

Z on a certain device at a certain

5_? point in time

Modeling o Calculate memory potentials

memory
consumption

35

Step?2 Stages

L J e Stage 1: Emulate Tensorflow
- () scheduler
E < J e Stage 2: Modeling memory
g i) consumption
E) ~ e Stage 3: Address the memory
5 overflow
e) g o Which nodes to move?
o Where to move?

Addressing
Overflow

36

Addressing Memory Overflow

e Each overflow point can be 0-1 min knapsack

o Move a set of nodes from the overloaded part

m Summation of their memory potentials at the overflow time 2
Overflow

o The cost of a move is how much it affects the existing
partitioning:
m Incur the least possible perturbation on Step 1 results
o Solved greedily
o Move the node which, per a memory unit, has the least

computation cost and incurs the least communication when
moved.

37

38

Models and Datasets

* We have experimented with 5 models with 2 different
configurations (large and very large)

Table 3
Specifications of models datasets.

#Para. #Graph
Model/Dataset Acronym #Layers HSD SL 109 sl

3 Word-RNN 8 2048 28 0.34 10578

RNN for Word-Level Language [38]/Tiny Shakespeare [39] Word-RNN-2 32 2048 25 1.18 30074
CHSD ED

Character-Aware Neural Language Char-CRN 8 2048 15 0.23 22748

Models [40]/Penn Treebank (PTB) [41] Char-CRN-2 32 2048 15 1.09 86663
#RU WF

. . WRN 610 101 14 1.91 187742

Wide Residual Net. [5]/CIFAR100 [42] WRN-2 304 50 28 3.77 79742
HSD MD

g 2 TRN 52 4098 2048 1.99 204792

Transformer [43]/IWSLT’16 German-English corpus [44] TRN-2 48 8192 2048 51 160518

HSD FS P SZ
oy g & & E3D 320 5 4 0.95 55756
Eidetic 3D LSTM [45]/Moving MNIST digits [46] E3D-2 512 5 8 2.4 55756

(C)HSD: (Character) Hidden State Dimension, SL: Sequence Length, ED: Embedding Dimensions, RU: Residual Units, WF: Widening Factor, MD:

Model Dimension, FS: Filter Size, P_SZ: patch size. 39

Comparison with Mesh-TensorFlow

3.5

2.5

1.5

0.5

1.36

~
=

b2 OOM(Mesh-TF)

2-GPUs(2)

ParDNN Speedup over Mesh-Tensorflow

2 —

1.8 =

<

wv

)

p=

>

@)

O

< o <

£ o 2o
=
£

4-GPUs(4)

2.9

m8

2.3

I
2
ax
€

27

m2:b4

8-GPUs(8)

b8 OOM(Mesh-TF)

o~
€

b2 OOM(Mesh-TF)

2-GPUs(8)

1.16 1.19

&
S

m2:b2 |

b4 OOM(Mesh-TF)

4-GPUs(32)

1:5

m8

8-

1.3 14

m4:b2

()]

The number in the brackets is the batch size.
Speedup over Mesh-TensorFlow developed by Google using Transformer Model

m2:b4

PUs(32)

b OOM(Mesh-TF)

Comparison with Critical Path Methods

ParDNN Speedup Over Critical Path and Linear Clustering

8 M~
.
6 A
5
4
’ L ™ d-
2 =5 Bt S
1 = i
~ <+ 0 N ¥
2, g © ©® wN < o
oN
Word-RNN Char-CRN WRN TRN E3D

Critical Path B Linear Clustering

R. Mayer, C. Mayer, L. Laich, The tensorflow partitioning and scheduling problem: It's the critical path! in: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep
Learning, 2017, pp. 1-6. 41

Comparison with Gradient Checkpointing

ParDNN Speedup Over Gradient Checkpointing

N
~N

2.5 2.5
2.5) o =5)
25 5 2.3 == 4 -4 4 £
= 19 19 1.9 1.9 1.9 £ 19 1.9 £ £ E
2 1.8 1.8 1.7 _,% 1.7 §_ -§ _é
) 1.5 1.4 1.5] 1.5 $ o S
1.5 £ = £ £
11 1.2 her P s B ot o o
) 1 0.98 1 ; ; c 5
| - o — -
0.7 0.75 g 8 g -]
.]) © ©
0.5 - =
= =
3 5 : £
o o] (o] (o]
0
N N Y ¥ 00 0 0N Y ITNYT T OO N E XN = N ¥ ® © © N = = =
SE2SEE2ESEEIRTIERIRRTEE = [2238283 \= =
- v o) — o~ < — o0 < oo} o0
< o0)
Word-RNN Char-CRN WRN E3D TRN Word-RNN-2 Char-CRN-2

® ParDNN is better in most of the cases.
e Checkpointing Fails to fit the model in some cases

42

45
40
35
30
25
20
15
10

8(128)
16(256)
4(128)
16(1024)

Word-RNN-2 ' Char-CRN-

N

Comparison with UVM

ParDNN Speedup over CUDA Unified Memory

8.4 6 5

16(32)
(

TRN-2

Results (Training Speedup)

ParDNN Speedup over Single GPU
(ParDNN Peak Performance)

30 27.5

25 20.9

20

14.8
15 12.4
8.6 g 91 8.393 1

10 52 6.2 7.5 53637_5 49648‘

5 I 3.6 2.8 32"

0 ll 0 -. .I
ST o nlensslescoNlsaT e oa
- - AR R - B T = A A = - T =i A A)
S8 8gFoad il Rl 0L AT

S & 6 % © 2
i i
Word-RNN Char-CRN WRN TRN E3D

Better resource utilization — Superlinear speedup up to 4 GPUs in all cases.

44

Results (Batch size scaling)

Batch size scaling

Model/#GPUs 1 2 4 8 16

Word-RNN 16 512 1024 2048 2048
Char-CRN 8 256 512 1024 2048
WRN 1 4 16 16 32
TRN 1 8 32 64 128
E3D | 8 16 16 32
Word-RNN-2 - - 32 128 256
Char-CRN-2 - - 128 512 1024
WRN-2 - - 4 16 32
TRN-2 - - 2 16 32
E3D-2 - - 8 16 32

ParDNN enables working with larger data, e.g. pushing larger batches, using
certain number of workers.

45

Time Complexity

The running time of our algorithm in all the experiments ranges from
18 to 117 sec

Table 1
Complexity of Each Step of PARDNN.

Step-1 Partition to minimize makespan
Graph slicing (inc. sorting) OK(|V|+ |E))
Mapping O(IV| * log* |V])

Step-2 Memory heuristic - I
TensorFlow scheduler emulator o(lV]+ |E]

Memory consumption tracker oV
Overflow handler o(V2))

Step-2 Memory heuristic-II
Residual Nodes movement and CP splitting oV

Overall PARDNN Complexity (w. Heuristic-I) o(v?

Overall PARDNN complexity (w. Heuristic-II) o(|V| * log* (|V]) + K| E|)

46

 We addressed memory constrained DNN models on multiple GPU
devices
— Elegant, non-intrusive and model agnostic approach
— Two step algorithm design provides efficiency and low overhead

— Compared to similar approaches, our results are better or provides
qualitative advantages

— Paper is on arxiv: https:/arxiv.org/abs/2008.08636
— Published in Elsevier Parallel Computing

This project is funded by Tiibitak 118E801.

47

https://arxiv.org/abs/2008.08636

Parallel systems are here

* Mostly homogeneous or heterogeneous (CPU + GPU) systems
 As acommunity we have done a good job in software preparedness for those
systems
Post-Moore’s Era (2025 onward) will bring more heterogeneity and
hardware specialization
* Low precision units, Al units, GPUs, FPGAs, QCs co-exist in a large-scale

system.
* Addressing programming issues in those systems will be more challenging.

https://parcorelab.ku.edu.tr/

48

https://parcorelab.ku.edu.tr/

