Yiiksek Bagarimli
Hesaplama ve Yapay Zeka
icin Yazilim Cozumleri

W2, KOC
%> UNIVERSITESI

I/

b eyon d Asst. Prof. Didem Unat
moore .%ﬂ Department of Computer Engineering

Ko¢ University




2006 2012
Graduated from PhD at
Bogazici University University of California,

San Diego



Didem Unat?
— A
:r}| g

BERKELEY LAB

St

MARIE CURIE

4

S
B Q;(. BILIM AKADEMISI

Lawrence Berkeley National Laboratory

THE

ROYAL
SOCIETY

2012-2014 2014 -
Luis Alvarez Postdoctoral Kog University
Fellowship
&’é& KOG
Lawrence Berkeley National SV EIaHIY

COMPUTING LABORATORY

Laboratory




ParCorelab

1 Post-doc

6 PhD Students
11 MSc Students

30+ Publications

Turkey, Pakistan, Iran, Indonesia, Albania, Kazakhstan, Tanzania, Palestine ...



[l Our Collaborators
[l Turkey, Kog University

Created with mupcrlarl.g



European Research Council

Established by the European Commission
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Supporting top
researchers anywhere in
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1/3rd of Top 500

Supercomputers - - >
are heterogenous
Network-on-Chip

NVIDIA.
Homogeneous CUDA
Multicore Era First release
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BeyondMoore addresses the most timely and challenging issue of computing.

How to efficiently and productively program
future computers in Post-Moore's Era?

Aims to solve the software-side
of Post-Moore’s crisis
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SparCity aims at creating a supercomputing framework that will provide
efficient algorithms and coherent tools designed for sparse computations,

while also opening up new usage areas in graph analytics.
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DL Needs Throughput-Oriented Architecture

e DL models are compute

intensive

® GPUs played major role in the

renaissance of DL

@)
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Order of magnitude faster
training

Many cores

High bandwidth memory
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L3 Cache
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Memory Bottleneck

e Accelerators (GPUs) have a limited

device memory
— GPU V100 comes with 32 GBs
— Technology limitations and price
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Memory Bottleneck

e Accelerators (GPUs) have a limited * DNNs grow in size
device memory — Higher accuracy on more
— GPU V100 comes with 32 GBs complex tasks (Transformers)
— Technology limitations and price — Faster training

e Wide ResNet vs ResNet
e  \WRN-16-8 >> ResNet-101
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Memory Bottleneck

e Accelerators (GPUs) have a limited * DNNs grow in size
device memory — Higher accuracy on more
— GPU V100 comes with 32 GBs complex tasks (Transformers)
— Technology limitations and price — Faster training
* Wide ResNet vs ResNet
‘ *  WRN-16-8 >> ResNet-101

 Models barely fit into single GPU memory
— Use small batch sizes
* Resource underutilization
 Models do not fit into single GPU memory
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Related Work

e (1) Single device based solutions
o Memory optimization techniques (Gradient Checkpointing)
o Utilizing the host memory (Unified Memory)

® (2) Distributed training

o Data parallelism
m Doesn’t address the memory issue
o Model parallelism (Gpipe, Pipedream, and others)
m Model-specific, not general
m Accuracy issues, requires manual tuning/implementations

o Hybrid parallelism (Mesh-TensorFlow)

m Specific, requires manual tuning
15



Our Approach: ParDNN

* Generic
— Zero dependency and requires no knowledge about
the DL aspects of the DNN models
 Automated, non-intrusive
— Requires no modification of the model or operation
kernels
* Works at system-level
— Operates on computational graph

16



Computational Graph

Deep Learning Computational
@ Model @ Graph e Operations in the graph
§ SRR O :> /\ :> represent one step
=9 e 5 e o Both forward pass and back

propagation are in the graph

Python, C/Cr Java 1" ® The graph is static

PR
O  Constructed before running and
Nt stays the same
! o There are dynamic cases

e The graph is acyclic

17



Computational Graph

Deep Learning Computational
Model Graph
® w @ i ® G(V,E): Task graph

: Task.
e .\@/@ Z a/(f):vwl?gsht of n,

Python, C/C++, Java Mg computation time

/l\ e F
Sl %@/@ e € E:Dependency.

c(e): cost of e,
J’ communication time
@ o Defines the execution
order

O O
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Computational Graph

Deep Learning Computational

odel Graph
® ) @ i ® G(V,E): Task graph

VU

= /A = P\ ¢V
e .\@/@ 2 a/(f)vwl?;t of n,

Python, C/C++, Java Mg computation time

/l\ e F
Wb %@/@ o e € E:Dependency.

| o c(e): cost of e,
communication time

- : , @ o Defines the execution
How to partition this task graph among multiple GPUs? order

® obey the memory constraints,
® reduce communication,
® minimize execution time
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Real DNN Graphs

e Number of operations reaches hundreds of thousands,

may scale up to millions.
o Another objective: Low complexity is necessary

Model Acronym #layers HSD SL #Parameters | #Graph Nodes Dataset
Recurrent Neural Network Word-RNN 10 2048 28 0.44 billion 11744 Tiny: Shakespeare [73]
for Word-Level Language [51] Word-RNN-2 8 4096 25 1.28 billion 10578 P laxespes -
#Layers CHSD ED
Character-Aware Char-CRN 8 2048 15 0.23 billion 22748 R
Neural Language Models [26] [ Char-CRN-2 32 20438 5 .09 billion 36663 Eenn Trechank (ET8) [29)
#Conv. Layers [65] #RU WEF
. : WRN 610 101 14 1.91 billion 187742
i T , =
Wide Residual Network [64] WRN 304 0 73 377 billion TOTA2 CIFAR100 [28]
#Layers HSD MD
Transiomer [54] TRN 24 5120 2048 | 1.97 billion 80550 IWSLT 2016
] TRN-2 BE 8102 | 2048 | 5.1 billion 160518 German—English corpus [6]
#Hidden Layers ES
s E3D 320 5 0.95 billion 55756 ¢ g
Eidetic 3D LSTM|58] 3D 310 z > 7 billion 33736 Moving MNIST digits [50]

20




Our Approach: ParDNN
Deep Learning Computational Cost Model ParDNN
Model Graph ~
@A . @ 3/ Offline Profiling @ @
Riaior :> / \ :> Compute Times ‘:> R
/l l Communilcatlf)n Times .\@/.
(estimation)
Python, C/C++, Java N —— I /@\
cheduler Emulator ,
I
/'\ Memory Consumption @\@/E
\l/ Estimations 3 /"
| ) . 2
\ @Mapping @

[ Deep Learning Distributed Execution Engine = : /

| Host | Device || Device || Device || Device |
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ParDNN Algorithm Overview

ParDNN Algorithm

Step 1: Given K devices, partition the graph
into K partitions so that execution time is
minimized

o Communication time is minimized

o Computation loads are balanced

22



ParDNN Algorithm Overview

ParDNN Algorithm

Step 2

e Step 1: Given K devices, partition the graph

into K partitions so that execution time is
minimized

o Communication time is minimized

o Computation loads are balanced

Step 2: Meet the memory consumption

constraints
o If each partition meets the device memory
constraints
B Done.
o Else
m Handle the memory overflow while
maintaining locality-parallelism trade-off.

23



ParDNN Algorithm

ParDNN Algorithm

® To achieve both
o Good quality partitions
o Reasonable runtime

e Step 1is divided into 3 stages

24



ParDNN Algorithm

e To achieve both
o Good quality partitions

o Reasonable runtime
e Step 1is divided into 3 stages:

&
=
S o Stage 1: Slicing
< m Gets smaller instance representation
% . m Obtaining coarser view
% a N m Capturing costly communications
o
< )
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Graph Slicing @

e Obtain K critical paths of the graph !1 !1 @

O Get the critical path @ @
m primary cluster W

o Remove its nodes & incident edges

e Until the graph has no more nodes LN
o Find the heaviest cluster
m secondary cluster i
o Remove its nodes & incident edges 3 /4
In the figure, pink and green paths are primary clusters @

Yellow, blue and purple nodes are secondary clusters 0

& -




ParDNN Algorithm Overview

® To achieve both
o Good quality partitions

Step 1 o Reasonable runtime

e Step 1is divided into 3 stages:
o Stage 1: Slicing

[ } O Stage 2: Mapping, merge
secondary clusters with primaries

m Balances computational loads
[ 1 m  Minimizes communication

=
=
=
S
28
<
Z
P
=
©
o
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Mapping

e |Initial merging
o Merges secondary clusters that have no parallelism
gain
e Level-aware load balancing
o Pick a secondary cluster and merge it with one on the
primaries such that
m This primary has the least load within its span
m The incurred communication is minimized.

28



Mapping

: 1
1 . 1
G |
1,3
\ e Load \ e State-of-the-art\ e
Balancing load balancing

@ algorithm by @

0 0 0 others io



ParDNN Algorithm Overview

® To achieve both
o Good quality partitions
o Reasonable runtime

e Step 1is divided into 3 stages:
o Stage 1: Slicing

=
e
g e
o
S
<
Z
Z
(M)
| -
©
(ol

( ) o Stage 2: Mapping

- g o Stage 3: Refinement

[ ) m Enhance partitioning quality
N ) e At the cluster level

® At the node level
m Swap paths and nodes between
primaries
30



e Path swapping:

o Swap a cluster ¢ with:
m C within the span of ¢, such that swapping ¢ with ¢’ improves the
quality.

e Node switching:

o Focus on communication edges

© When there are many heavy communications:
m Some may fall outside the clusters, thus participate in creating
heavy critical paths.
o In newly formed critical path.

m Switch such node placements if this shortens it.
31



ParDNN Algorithm

Step 2: Meeting Memory Constraints

N

Scheduler
Emulator

-

AV

>

4

-

AV

N

4

e Step 2: Meet the memory
consumption constraints
o Stage 1: Emulate Tensorflow

scheduler

m Get the node’s expected
scheduling times

m Memory allocation and
deallocation patterns

32



Memory consumption

® Assume a schedule:
o ACD,EFB,G.
® Peak memory reserved:

o 1+6+1
m =8




Memory consumption

e Assume another schedule:
o ABCD,EFG.

® Peak memory reserved:
o 6+1+1+2+1-=11

e |t affects as well when having
multiple workers.

o When the data is sent from one to
another.




Step?2 Stages

p S
L J e Stage 1: Emulate Tensorflow
[ | scheduler

E < J e Stage 2: Modeling memory

<_§, i ) consumption

<Z’: : : o Derive the memory consumption

Z on a certain device at a certain

5_? point in time

Modeling o Calculate memory potentials

memory
consumption

35



Step?2 Stages

L J e Stage 1: Emulate Tensorflow
- ( ) scheduler
E < J e Stage 2: Modeling memory
g i ) consumption
E ) ~ e Stage 3: Address the memory
5 overflow
e ) g o  Which nodes to move?
o Where to move?

Addressing
Overflow

36



Addressing Memory Overflow

e Each overflow point can be 0-1 min knapsack

o Move a set of nodes from the overloaded part

m Summation of their memory potentials at the overflow time 2
Overflow

o The cost of a move is how much it affects the existing
partitioning:
m Incur the least possible perturbation on Step 1 results
o Solved greedily
o Move the node which, per a memory unit, has the least

computation cost and incurs the least communication when
moved.

37
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Models and Datasets

* We have experimented with 5 models with 2 different
configurations (large and very large)

Table 3
Specifications of models datasets.

#Para. #Graph
Model/Dataset Acronym #Layers HSD SL 109 sl

3 Word-RNN 8 2048 28 0.34 10578

RNN for Word-Level Language [38]/Tiny Shakespeare [39] Word-RNN-2 32 2048 25 1.18 30074
CHSD ED

Character-Aware Neural Language Char-CRN 8 2048 15 0.23 22748

Models [40]/Penn Treebank (PTB) [41] Char-CRN-2 32 2048 15 1.09 86663
#RU WF

. . WRN 610 101 14 1.91 187742

Wide Residual Net. [5]/CIFAR100 [42] WRN-2 304 50 28 3.77 79742
HSD MD

g 2 TRN 52 4098 2048 1.99 204792

Transformer [43]/IWSLT’16 German-English corpus [44] TRN-2 48 8192 2048 51 160518

HSD FS P SZ
oy g & & E3D 320 5 4 0.95 55756
Eidetic 3D LSTM [45]/Moving MNIST digits [46] E3D-2 512 5 8 2.4 55756

(C)HSD: (Character) Hidden State Dimension, SL: Sequence Length, ED: Embedding Dimensions, RU: Residual Units, WF: Widening Factor, MD:

Model Dimension, FS: Filter Size, P_SZ: patch size. 39



Comparison with Mesh-TensorFlow
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Comparison with Critical Path Methods

ParDNN Speedup Over Critical Path and Linear Clustering
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R. Mayer, C. Mayer, L. Laich, The tensorflow partitioning and scheduling problem: It's the critical path! in: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep
Learning, 2017, pp. 1-6. 41



Comparison with Gradient Checkpointing

ParDNN Speedup Over Gradient Checkpointing
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® ParDNN is better in most of the cases.
e Checkpointing Fails to fit the model in some cases
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Results (Training Speedup)

ParDNN Speedup over Single GPU
(ParDNN Peak Performance)

30 27.5

25 20.9

20

14.8
15 12.4
8.6 g 91 8.393 1

10 52 6.2 7.5 53637_5 49648‘

5 I 3.6 2.8 32"

0 ll 0 -. .I
ST o nlensslescoNlsaT e oa
- - AR R - B T = A A = - T =i A A )
S8 8gFoad il Rl 0L AT

S & 6 % © 2
i i
Word-RNN Char-CRN WRN TRN E3D

Better resource utilization — Superlinear speedup up to 4 GPUs in all cases.
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Results (Batch size scaling)

Batch size scaling

Model/#GPUs 1 2 4 8 16

Word-RNN 16 512 1024 2048 2048
Char-CRN 8 256 512 1024 2048
WRN 1 4 16 16 32
TRN 1 8 32 64 128
E3D | 8 16 16 32
Word-RNN-2 - - 32 128 256
Char-CRN-2 - - 128 512 1024
WRN-2 - - 4 16 32
TRN-2 - - 2 16 32
E3D-2 - - 8 16 32

ParDNN enables working with larger data, e.g. pushing larger batches, using
certain number of workers.
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Time Complexity

The running time of our algorithm in all the experiments ranges from
18 to 117 sec

Table 1
Complexity of Each Step of PARDNN.

Step-1 Partition to minimize makespan
Graph slicing (inc. sorting) OK(|V|+ |E))
Mapping O(IV| * log* |V])

Step-2 Memory heuristic - I
TensorFlow scheduler emulator o(lV]+ |E]

Memory consumption tracker oV
Overflow handler o(V2))

Step-2 Memory heuristic-II
Residual Nodes movement and CP splitting oV

Overall PARDNN Complexity (w. Heuristic-I) o(v?

Overall PARDNN complexity (w. Heuristic-II) o(|V| * log* (|V]) + K| E|)

46



 We addressed memory constrained DNN models on multiple GPU
devices
— Elegant, non-intrusive and model agnostic approach
— Two step algorithm design provides efficiency and low overhead

— Compared to similar approaches, our results are better or provides
qualitative advantages

— Paper is on arxiv: https:/arxiv.org/abs/2008.08636
— Published in Elsevier Parallel Computing

This project is funded by Tiibitak 118E801.
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https://arxiv.org/abs/2008.08636

Parallel systems are here

* Mostly homogeneous or heterogeneous (CPU + GPU) systems
 As acommunity we have done a good job in software preparedness for those
systems
Post-Moore’s Era (2025 onward) will bring more heterogeneity and
hardware specialization
* Low precision units, Al units, GPUs, FPGAs, QCs co-exist in a large-scale

system.
* Addressing programming issues in those systems will be more challenging.

https://parcorelab.ku.edu.tr/
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