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1 Post-doc
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ParCoreLab

Turkey, Pakistan, Iran, Indonesia, Albania, Kazakhstan, Tanzania, Palestine ...



Collaborations with Universities, Research Labs and Industry
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1.5 Million Euros

First ERC grant received 
from Turkey in         

Computer Science 
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Supporting top 
researchers anywhere in 

the world



BeyondMoore addresses the most timely and challenging issue of computing.

How to efficiently and productively program 
future computers in Post-Moore’s Era? 

Aims to solve the software-side 
of Post-Moore’s crisis



This project has received funding from the European High-Performance Computing Joint 
Undertaking under grant agreement No. 956213.

An Optimization and Co-design
Framework for Sparse

Computation
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2.6 Million Euros

Project Coordinator in an 
European consortium with    6 

partners



 SparCity aims at creating a supercomputing framework that will provide 

efficient algorithms and coherent tools designed for sparse computations, 

while also opening up new usage areas in graph analytics.



Yapay Zeka için HPC Çözümleri
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DL Needs Throughput-Oriented Architecture

● DL models are compute 
intensive

● GPUs played major role in the 
renaissance of DL
○ Order of magnitude faster 

training
○ Many cores
○ High bandwidth memory
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Memory Bottleneck

• Accelerators (GPUs) have a limited 
device memory 
– GPU V100 comes with 32 GBs
– Technology limitations and price
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Memory Bottleneck

• DNNs grow in size
– Higher accuracy on more 

complex tasks (Transformers)
– Faster training 

• Wide ResNet vs ResNet
• WRN-16-8 >> ResNet-101
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Memory Bottleneck

• Models barely fit into single GPU memory 
– Use small batch sizes

• Resource underutilization
• Models do not fit into single GPU memory
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Related Work

● (1) Single device based solutions 
○ Memory optimization techniques (Gradient Checkpointing)
○ Utilizing the host memory (Unified Memory)

● (2) Distributed training
○ Data parallelism

■ Doesn’t address the memory issue

○ Model parallelism (Gpipe, Pipedream, and others)
■ Model-specific, not general
■ Accuracy issues, requires manual tuning/implementations 

○ Hybrid parallelism (Mesh-TensorFlow)
■ Specific, requires manual tuning
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Our Approach: ParDNN
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• Generic
– Zero dependency and requires no knowledge about 

the DL aspects of the DNN models
• Automated, non-intrusive 

– Requires no modification of the model or operation 
kernels

• Works at system-level
– Operates on computational graph



Computational Graph

● Operations in the graph 
represent one step

○ Both forward pass and back 
propagation are in the graph

● The graph is static 

○ Constructed before running and 
stays the same

○ There are dynamic cases 

● The graph is acyclic
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Computational Graph

● G(V,E): Task graph
● V

○ n ∈ V: Task.
○ w(n): weight of n, 

computation time

● E
○ e  ∈ E: Dependency.
○ c(e): cost of e, 

communication time
○ Defines the execution 

order
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How to partition this task graph among multiple GPUs?
● obey the memory constraints, 
● reduce communication, 
● minimize execution time



Real DNN Graphs
● Number of operations reaches hundreds of thousands, 

may scale up to millions.
○ Another objective: Low complexity is necessary
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Our Approach: ParDNN
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ParDNN Algorithm Overview 
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Step 2

● Step 1: Given K devices, partition the graph 
into K partitions so that execution time is 
minimized
○ Communication time is minimized
○ Computation loads are balanced
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ParDNN Algorithm Overview 
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Step 2

● Step 1: Given K devices, partition the graph 
into K partitions so that execution time is 
minimized
○ Communication time is minimized
○ Computation loads are balanced

● Step 2: Meet the memory consumption 
constraints 
○ If each partition meets the device memory 

constraints 

■ Done.

○ Else
■ Handle the memory overflow while 

maintaining locality-parallelism trade-off.
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ParDNN Algorithm 
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Stage1

Stage2

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages
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ParDNN Algorithm 
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Stage2

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing 

■ Gets smaller instance representation
■ Obtaining coarser view
■ Capturing costly communications

Slicing
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Graph Slicing

● Obtain K critical paths of the graph
○ Get the critical path 

■ primary cluster
○ Remove its nodes & incident edges

● Until the graph has no more nodes
○ Find the heaviest cluster

■ secondary cluster
○ Remove its nodes & incident edges

In the figure, pink and green paths are primary clusters 
Yellow, blue and purple nodes are secondary clusters
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ParDNN Algorithm Overview 
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Slicing

Mapping

Stage3

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing

○ Stage 2: Mapping, merge 
secondary clusters with primaries 

in a way that: 
■ Balances computational loads
■ Minimizes communication
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Mapping

● Initial merging 
○ Merges secondary clusters that have no parallelism 

gain
● Level-aware load balancing

○ Pick a secondary cluster and merge it with one on the 
primaries such that
■ This primary has the least load within its span
■ The incurred communication is minimized.
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Mapping

Initial 
merging

Load 
Balancing

VS

State-of-the-art 
load balancing

algorithm by 
others
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ParDNN Algorithm Overview 
Pa

rD
N

N
 A

lg
or

ith
m Step 1

Slicing

Mapping

Refinement

● To achieve both
○ Good quality partitions 
○ Reasonable runtime

● Step 1 is divided into 3 stages:
○ Stage 1: Slicing
○ Stage 2: Mapping 
○ Stage 3: Refinement

■ Enhance partitioning quality
● At the cluster level
● At the node level

■ Swap paths and nodes between 

primaries 
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Refinement

● Path swapping:
○ Swap a cluster c with:

■ c’ within the span of c, such that swapping c with c’ improves the 
quality.

● Node switching:
○ Focus on communication edges
○ When there are many heavy communications:

■ Some may fall outside the clusters, thus participate in creating 
heavy critical paths.

○ In newly formed critical path.
■ Switch such node placements if this shortens it.
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Step 2: Meeting Memory Constraints
Pa
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Step 2

Slicing

Mapping

Scheduler 
Emulator 

Stage 3

Refinement

● Step 2: Meet the memory 
consumption constraints 
○ Stage 1: Emulate Tensorflow 

scheduler
■ Get the node’s expected 

scheduling times
■ Memory allocation and 

deallocation patterns
Stage 2
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● Assume a schedule:
○ A, C, D, E, F, B, G.

● Peak memory reserved:
○ 1 + 6 + 1

■ = 8

Memory consumption
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● Assume another schedule:
○ A, B, C, D, E, F, G.

● Peak memory reserved:
○ 6 + 1 + 1 + 2 + 1 = 11  

● It affects as well when having 
multiple workers.
○ When the data is sent from one to 

another.

Memory consumption
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Step2 Stages
Pa
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Step 2

Slicing

Mapping

Scheduler 
Simulation

Stage 3

Refinement

● Stage 1: Emulate Tensorflow 
scheduler

● Stage 2: Modeling memory 
consumption
○ Derive the memory consumption 

on a certain device at a certain 
point in time

○ Calculate memory potentialsModeling 
memory 

consumption
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Step2 Stages
Pa
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Step 2

Slicing

Mapping

Scheduler 
Simulation

Addressing 
Overflow

Refinement

Modeling 
memory 

consumption

● Stage 1: Emulate Tensorflow 
scheduler

● Stage 2: Modeling memory 
consumption

● Stage 3: Address the memory 
overflow
○ Which nodes to move?
○ Where to move?
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Addressing Memory Overflow

● Each overflow point can be 0-1 min knapsack
○ Move a set of nodes from the overloaded part

■ Summation of their memory potentials at the overflow time ≥ 
Overflow

○ The cost of a move is how much it affects the existing 
partitioning:
■ Incur the least possible perturbation on Step 1 results

○ Solved greedily
○ Move the node which , per a memory unit, has the least 

computation cost and incurs the least communication when 
moved.
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Results
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Models and Datasets 
• We have experimented with 5 models with 2 different 

configurations (large and very large)
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Comparison with Mesh-TensorFlow
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The number in the brackets is the batch size.
Speedup over Mesh-TensorFlow developed by Google using Transformer Model



Comparison with Critical Path Methods

41
 R. Mayer, C. Mayer, L. Laich, The tensorflow partitioning and scheduling problem: It’s the critical path! in: Proceedings of the 1st Workshop on Distributed Infrastructures for Deep 

Learning, 2017, pp. 1–6.



Comparison with Gradient Checkpointing
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● ParDNN is better in most of the cases.
●  Checkpointing Fails to fit the model in some cases



Comparison with UVM
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Results (Training Speedup)
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Better resource utilization → Superlinear speedup up to 4 GPUs in all cases.



Results (Batch size scaling)

ParDNN enables working with larger data, e.g. pushing larger batches, using 
certain number of workers.
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Time Complexity
The running time of our algorithm in all the experiments ranges from 

18 to 117 sec
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Summary
• We addressed memory constrained DNN models on multiple GPU 

devices 
– Elegant, non-intrusive and model agnostic approach  
– Two step algorithm design provides efficiency and low overhead
– Compared to similar approaches, our results are better or provides 

qualitative advantages 
– Paper is on arxiv: https://arxiv.org/abs/2008.08636

– Published in Elsevier Parallel Computing

This project is funded by Tübitak 118E801.
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Outlook
Parallel systems are here

• Mostly homogeneous or heterogeneous (CPU + GPU) systems

• As a community we have done a good job in software preparedness for those 

systems

Post-Moore’s Era (2025 onward) will bring more heterogeneity and 

hardware specialization

• Low precision units, AI units, GPUs, FPGAs, QCs co-exist in a large-scale 

system.

• Addressing programming issues in those systems will be more challenging.
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https://parcorelab.ku.edu.tr/

https://parcorelab.ku.edu.tr/

