Görüntü Tanımada Çizge Tabanlı Yöntemler

Ahmet İşcen

Google Research

Outline

- ^{o1} Label Propagation with Graphs
- ⁰² Ranking on Manifolds with Graphs
- ^{o3} Metric Learning with Graphs
- Deep Semi-supervised Learning with Graphs

Google Research

Label Propagation with Graphs

Label propagation

- Semi supervised classification
- Transductive learning
- N examples, C classes
- Smoothness assumption:

"if two points are close, then, so should be the corresponding output"

Label propagation

- Semi supervised classification
- Transductive learning
- N examples, C classes

$$F^t = \alpha S F^{t-1} + (1-\alpha)Y$$

Y: N x C 1-hot-coded label matrix
S: N x N normalized affinity matrix (k-nearest neighbor graph)
a: propagation parameter in (0,1)
F: N x C class confidence matrix

iteration 0

iteration 1

iteration 2

iteration 5

iteration 10

iteration 50

iteration 100

Ranking on Manifolds with Graphs

Ranking on manifolds

- Similarity search (unsupervised)
- N examples, 1 query

Euclidean similarity

Euclidean similarity

Ranking on manifolds

- Similarity search (unsupervised)
- N examples, 1 query

 $\mathbf{f}^t = \alpha S \mathbf{f}^{t-1} + (1-\alpha) \mathbf{y}$

y: N x 1 1-hot-coded vector which defines the query
S: N x N normalized affinity matrix (k-nearest neighbor graph)
a: propagation parameter in (0,1)
f: N x 1 similarity vector w.r.t the query

iteration 0

Euclidean vs similarity propagation

Euclidean vs similarity propagation

Euclidean vs similarity propagation

Efficient solution

- Iterative solution (inefficient)

$$\mathbf{f}^t = \alpha S \mathbf{f}^{t-1} + (1-\alpha) \mathbf{y}$$

- Closed-form solution

 $\mathbf{f}^{\star} = (I - \alpha S)^{-1} \mathbf{y}$ Not sparse, inefficient

- Conjugate gradient for linear system

 $(I - \alpha S) \mathbf{f}^{\star} = \mathbf{y}$ Sparse, efficient

[Iscen et al, CVPR 2017, Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations]

Metric Learning with Graphs

Metric learning

- Learn a metric which assigns small distances to images that are visually similar

Metric learning

- Learn a metric which assigns small distances to images that are visually similar

raw image collection

negatives

 automatically mine pairs of matching and non-matching images

Anchor selection

- Nearest neighbor graph A
- Stationary probability distribution π of random walk on A $\pi = \pi P$,
 - $P = D^{-1}A$
 - D = degree matrix of A

Google

• : anchor

Google

Google

Experiments on instance search

initialize: pre-training on ImageNet -- fine-tune: MoM on 10⁶ images

Experiments on fine-grained recognition

Cyclic Match: [Li et al. ECCV'16. Unsupervised visual representation learning by graph-based consistent constraints] Triplets (semi-hard): [Schroff et al. CVPR'15. Facenet: A unified embedding for face recognition and clustering] Lifted Structure: [Song et al. CVPR'16. Deep metric learning via lifted structured feature embedding] Smart Mining: [Harwood et al. ICCV'17. Smart mining for deep metric learning. In ICCV, 2017]

Ablation experiments

Positive	Negative	CUB	Oxford5k	
And	chors	All	Random \mathcal{A}	
Initial		35.0	52.6	
NN_5^e	$X \setminus NN_5^e$	38.5	37.4	41.9
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1
NN_5^e	P^-	42.1	57.8	71.3
P^+	P^-	43.5	64.4	73.7
$P^+ + W$	P^-+W	45.3	67.0	76.7

random anchors vs proposed anchors

Ablation experiments

Positive	Negative	CUB	Oxfore	d5k	
Anchors		All	Random \mathcal{A}		
In	itial	35.0	52.6	5	
NN_5^e	$X \setminus NN_5^e$	38.5	37.4	41.9	
P^+	$X \setminus \mathrm{NN}_5^e$	43.0	48.2	38.1	
NN_5^e	P^{-}	42.1	57.8	71.3	hard positives vs
P^+	P^{-}	43.5	64.4	73.7	easy positives
P^++W	P^-+W	45.3	67.0	76.7	

Ablation experiments

Positive	Negative	CUB	Oxfore	d5k	
Anchors		All	Random	$ \mathcal{A} $	
Ini	itial	35.0	52.6	6	
NN_5^e	$X \backslash \mathrm{NN}_5^e$	38.5	37.4	41.9	
P^+	$X \backslash \mathrm{NN}_5^e$	43.0	48.2	38.1	hard negatives vs
NN_5^e	P^-	42.1	57.8	71.3	easy negatives
P^+	P^-	43.5	64.4	73.7	
$P^+ + W$	P^-+W	45.3	67.0	76.7	

Deep Semi-supervised Learning with Graphs

Given labeled examples X_L , and unlabeled examples X_U

We want learn:

- A feature map $\,\phi_ heta:\mathcal{X} o\mathbb{R}^d$
- A classifier (FC layer after the feature map)

By combining:

- Transductive learning (all test points are seen) with inductive learning (none of the test points are seen)

classifier f_{θ}

Google

Google

Google

Google

Google

Google

- Supervised loss

 $L_s(X_L, Y_L; \theta) := \sum_{i \in L} \ell_s(f_{\theta}(x_i), y_j)$ Cross entropy loss

- Weighted pseudo-label loss

$$L_w(X_U, \hat{Y}_U; \theta) := \sum_{i \in U} \omega_i \zeta_{\hat{y}_i} \ell_s \left(f_{\theta}(x_i), \hat{y}_i \right)$$

- Certainty of pseudo-label prediction

$$\omega_i := 1 - \frac{H(\hat{\mathbf{z}}_i)}{\log c}$$

- Class weight for balancing class distribution: $\zeta_j := (|L_j| + |U_j|)^{-1}$

Correctly and incorrectly pseudo-labeled examples

Google

Ablation experiment on CIFAR10 (Error rate, less is better)

Pseudo-labeling	ω_i	ζ_j	CIFAR-10
			36.53 ± 1.42
Diffusion (7)		\checkmark	36.17 ± 1.98
Diffusion (7)	1		33.32 ± 1.53
	1	\checkmark	32.40 ± 1.80
Network (1)	\checkmark	\checkmark	35.17 ± 2.46

Classification error on CIFAR10

Dataset	CIFAR-10					
Nb. labeled images	500	1000	2000	4000		
Fully supervised	49.08 ± 0.83	40.03 ± 1.11	29.58 ± 0.93	21.63 ± 0.38		
TDCNN [33] [†] Ours–(1) Ours	-35.17 ± 2.46 32.40 ± 1.80	$32.67 \pm 1.93 \\ 23.79 \pm 1.31 \\ 22.02 \pm 0.88$	$22.99 \pm 0.79 \\ 16.64 \pm 0.48 \\ 15.66 \pm 0.35$	$16.17 \pm 0.37 \\ 13.21 \pm 0.61 \\ 12.69 \pm 0.29$		
VAT [23] [†] II model [20] [†] Temporal Ensemble [20] [†] MT [35] [†] MT [35] MT + Ours	- - 27.45 \pm 2.64 24.02 \pm 2.44	- - 27.36 \pm 1.30 19.04 \pm 0.51 16.93 \pm 0.70	- - 15.73 ± 0.31 14.35 ± 0.31 13.22 ± 0.29	$\begin{array}{c} 11.36 \\ 12.36 \pm 0.31 \\ 12.16 \pm 0.24 \\ 12.31 \pm 0.28 \\ 11.41 \pm 0.25 \\ \textbf{10.61} \pm \textbf{0.28} \end{array}$		

Classification error on CIFAR100 and mini-ImageNet

Dataset	CIFA	R-100	Mini-ImageNet-top1	
Nb. labeled images	4000	10000	4000	10000
Fully supervised	55.43 ± 0.11	40.67 ± 0.49	74.78 ± 0.33	60.25 ± 0.29
Ours MT [<mark>35</mark>] MT + Ours	$\begin{array}{c} 46.20 \pm 0.76 \\ 45.36 \pm 0.49 \\ \textbf{43.73} \pm \textbf{0.20} \end{array}$	$\begin{array}{c} 38.43 \pm 1.88 \\ 36.08 \pm 0.51 \\ \textbf{35.92} \pm \textbf{0.47} \end{array}$	$\begin{array}{c} {\bf 70.29 \pm 0.81} \\ {\bf 72.51 \pm 0.22} \\ {\bf 72.78 \pm 0.15} \end{array}$	57.58 ± 1.47 57.55 ± 1.11 57.35 ± 1.66

Other graph-based methods

Additional graph-based methods

- Fast spectral ranking for similarity search (Iscen et al, CVPR 2018)
 - Embedding for manifold search based on low-rank decomposition
- Hybrid diffusion: Spectral-temporal graph filtering for manifold ranking (Iscen et al, ACCV 2018)
 - Even more efficient label propagation for similarity search
- Graph convolutional networks for learning with few clean and many noisy labels (Iscen et al, ECCV 2020)
 - Graph convolutional networks for cleaning label noise

co-authors

Slide credits: Giorgos Tolias and Yannis Avrithis

Questions

