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Label propagation

- Semi supervised classification
- Transductive learning
- N examples, C classes

- Smoothness assumption:

“if two points are close, then, so should 
be the corresponding output”

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency] 4



Label propagation

- Semi supervised classification
- Transductive learning
- N examples, C classes

Y: N x C 1-hot-coded label matrix
S: N x N normalized affinity matrix (k-nearest 
neighbor graph)
α: propagation parameter in (0,1)
F: N x C class confidence matrix

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency] 5



Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 0
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Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 1
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Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 2
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Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 5
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Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 10
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Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 50

11



Label propagation iterations

[Zhou et al, NeurIPS 2003, Learning with Local and Global Consistency]

iteration 100
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Ranking on 
Manifolds with 
Graphs
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Ranking on manifolds

- Similarity search (unsupervised)
- N examples, 1 query

[Zhou et al, NeurIPS 2003, Ranking on data manifolds] 14



Euclidean similarity

[Zhou et al, NeurIPS 2003, Ranking on data manifolds] 15



Euclidean similarity

[Zhou et al, NeurIPS 2003, Ranking on data manifolds] 16



Ranking on manifolds

- Similarity search (unsupervised)
- N examples, 1 query

y: N x 1 1-hot-coded vector which defines the query
S: N x N normalized affinity matrix (k-nearest 
neighbor graph)
α: propagation parameter in (0,1)
f: N x 1 similarity vector w.r.t the query

[Zhou et al, NeurIPS 2003, Ranking on data manifolds] 17



Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 0
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Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 1
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Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 5
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Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 10
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Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 50
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Similarity propagation iterations

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

iteration 100
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Euclidean vs similarity propagation

[Zhou et al, NeurIPS 2003, Ranking on data manifolds]

Similarity propagationEuclidean similarity
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Euclidean vs similarity propagation
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Euclidean vs similarity propagation

manifold similarity for image retrieval:
[Zhang et al., ECCV’12, Query specific fusion for image retrieval]
[Donoser & Bischof, CVPR’13, Diffusion processes for retrieval 
revisited]
[Bai et al. ICCV’17, Ensemble diffusion for retrieval]
[Iscen, Tolias, Avrithis, Furon, Chum. CVPR’17. Efficient Diffusion 
on Region Manifolds: Recovering Small Objects with Compact 
CNN Representations]
……
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- Iterative solution (inefficient)

- Closed-form solution 

- Conjugate gradient for linear system

Efficient solution

Not sparse, 
inefficient

Sparse, 
efficient

[Iscen et al, CVPR 2017, Efficient Diffusion on Region Manifolds: Recovering Small 
Objects with Compact CNN Representations] 27



Metric Learning 
with Graphs
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Metric learning

- Learn a metric which assigns small distances to images that are visually similar

CNN

29



Metric learning

- Learn a metric which assigns small distances to images that are visually similar

CNN Contrastive loss
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Mining on manifolds (MoM)

raw image collection

MoM

pre-trained features

anchor image

positives

negatives

anchor image

positives

negatives
- automatically mine pairs of matching and 

non-matching images
[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ] 31



Mining on manifolds (MoM)

Anchor selection

- Nearest neighbor graph A
- Stationary probability distribution π of random walk on A

π = π P, 
P = D-1A 
D = degree matrix of A

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ] 32



Mining on manifolds (MoM)

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

: anchor 
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Mining on manifolds (MoM)

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

Anchors Ours - Positive Euclidean - Positive Ours - Negative Euclidean - Negative
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Experiments on instance search

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

initialize: pre-training on ImageNet -- fine-tune: MoM on 106 images
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Experiments on fine-grained recognition

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

Cyclic Match: [Li et al. ECCV’16. Unsupervised visual representation learning by graph-based consistent constraints]
Triplets (semi-hard): [Schroff et al. CVPR’15. Facenet: A unified embedding for face recognition and clustering]
Lifted Structure: [Song et al. CVPR’16. Deep metric learning via lifted structured feature embedding]
Smart Mining: [Harwood et al. ICCV’17. Smart mining for deep metric learning. In ICCV, 2017]
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Ablation experiments

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

random anchors 
vs proposed 
anchors
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Ablation experiments

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

hard positives vs 
easy positives
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Ablation experiments

[Iscen et al, CVPR 2018, Mining on Manifolds: Metric Learning without Labels ]

hard negatives vs 
easy negatives
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Deep 
Semi-supervised 
Learning with 
Graphs
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Label Propagation for Deep Semi-supervised Learning

Given labeled examples       , and unlabeled examples       

We want learn:

- A feature map
- A classifier (FC layer after the feature map) 

By combining:

- Transductive learning (all test points are seen) with inductive learning (none of 
the test points are seen)

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 41



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 42



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 43



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 44



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 45



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 46



Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 47



Label Propagation for Deep Semi-supervised Learning

- Supervised loss

- Weighted pseudo-label loss

- Certainty of pseudo-label prediction

- Class weight for balancing class distribution: 

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning]

Cross entropy loss
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Label Propagation for Deep Semi-supervised Learning

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning]

Correctly and incorrectly pseudo-labeled examples
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Ablation experiment on CIFAR10 (Error rate, less is better)

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning]

example weight

class balancing
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Classification error on CIFAR10

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 51



Classification error on CIFAR100 and mini-ImageNet

[Iscen et al, CVPR 2019, Label Propagation for Deep Semi-supervised Learning] 52



Other graph-based 
methods
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Additional graph-based methods

- Fast spectral ranking for similarity search (Iscen et al, CVPR 2018)
- Embedding for manifold search based on low-rank decomposition

- Hybrid diffusion: Spectral-temporal graph filtering for manifold ranking (Iscen 
et al, ACCV 2018)

- Even more efficient label propagation for similarity search

- Graph convolutional networks for learning with few clean and many noisy 
labels (Iscen et al, ECCV 2020)

- Graph convolutional networks for cleaning label noise
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Questions
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