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Neurodevelopmental Disorders

 Delay/disturbance in the skills : Social, Motor, Language, Cognition

* Heterogeneous phenotype
* Common: ASD 1 in every 54 children in the US

* Examples
e Autism spectrum disorder (ASD)
* Intellectual disability (ID) B S::c‘;:l':‘m o
* Global developmental delay (GDD) & Disorder

Attention Deficit Hyperactivity Disorder (ADHD)
Social Communication Disorder

https://carmenbpingree.com/blog/what-is-autism-spectrum-disorder/
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Neurodevelopmental Disorders — cont’d

* Highly comorbid

3
Jensen and Girirajan, Genome Medicine 2017



Autism & Intellectual Disability As Comorbid Disorders
Autism Spectrum Disorder (ASD) Intellectual Disability (ID)
restrictive and repetitive behaviors, e Characterized by below average intellectual
dysfunctional reciprocal social behavior, and functioning (1Q < 70) with significant
impaired communication abilities limitations in adaptive functioning
Seen in 2% school age children’ e  Affecting 1-3% of population’
o 70% of children with ASD has also ID.
o Both conditions are heterogeneous.
o Both are associated with CNVs and single gene mutations.
o Evidence supports oliogenic mode of inheritance for both.

4
TSrivastava, A. K., & Schwartz, C. E. (2014). Neuroscience and biobehavioral reviews, 46 Pt 2, 161—-174. https://doi.org/10.1016/j.neubiorev.2014.02.015
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Risk Gene Discovery

Grove J. et al., Nature Genetics 2019

wealthy Mo, Jealthy Dag

https://www.cshl.edu/autism-genetics-study-calls-
attention-impaired-motor-skills-general-cognitive-
impairment/

35,584 whole-exome sequenced samples
11,986 individuals with autism
spectrum disorder (ASD)
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FDR < 0.1)
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Satterstrom et al., CELL 2020.




Risk Gene Discovery
—cont’d

* For Autism, it is a large puzzle with
* ~100 pieces known,
* ~900 remaining,

* ~20,000 possible pieces to choose
from.

* Genes/Proteins are interacting in
biochemical networks.

* Can we use the guilt by association
principle to pinpoint connecting
pieces?
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Node Classification
A Semi-supervised Learning Problem

Stanford CS224W: Machine Learning with Graphs
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Risk Gene Discovery Algorithms

NETBAG (Gilman et al., Neuron 2014)
DAWN (Liu et al., Mol. Autism 2015)

Evidence Weighted SVM (Krishnan et al., Nature
Neuroscience 2016)

Random Forest (Duda et al., Translational Psychiatry
2018)

ST-Steiner (Norman and Cicek, Bioinformatics 2019)
ForecASD (Brueggeman et al., Scientific Reports 2020)
DeepND (Beyreli et al., bioRxiv 2021)
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A. construct a background network B. select seeds

NETBAG — 7~ =i =

-
-
-

Figure from Gilman et al. 2011, “Rare de novo variants associated with autism implicate a large functional network of genes involved in
11
formation and function of synapses”. Neuron.



A. construct a coexpression network

DAWN

D. find risk genes among network genes

B. assign prior risk scores

5

O

C. high-scoring clusters of network genes

4

Figure from Liu et al. 2014, “DAWN: a framework to identify autism genes and subnetworks using gene expression

and genetics”. Molecular Autism.
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Evidence Based SVM
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Figure from Krishnan et al. 2016, “Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder”

Evidence-weighted @ Network-based,
gold standard evidence-weighted
disease-gene classifier
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functional characterization

3

. Nature Neuroscience.



ST-Steiner

Spatio-Temporal
Window 2

Spatio-Temporal
Window 1

Figure from Norman and Cicek, 2019, “ST-Steiner: a spatio-temporal gene discovery algorithm”. Bioinformatics
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Random Forest
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CFOSS-SpeCIeS braln-SpeCIfIC http://people.csail.mit.edu/dsontag/courses/ml13/slides/lecture13.pdf
functional relationship network

Duda et al. 2018, “Brain-specific functional relationship networks inform autism spectrum disorder gene prediction”. Translational Psychiatry



forecASD

a
____________________ features ~ ~  training&validaton ~ predicion
novel features ™ - y random forest forecASD
, P 2 :i  genome-wide prediction

BrainSpan-RF STRING-RF P - | = ; ¥
el == B
° Oy ™= = = ¥ N
- o ° E S —— al) - ¥ NRXN1 08
F — _— ﬁ: SHANK3 .89
: : | v
""" e | §C- CACNA1B 67
literature-derived s = H b
DAMAGES MY 3 _— . » e 1 /
C O Y 2 . I
(O] =) i
=2 1 § Aﬂ%mﬁﬂﬂ; ORaM2 0
@)} —Q ey S
Krishnan = o oo ﬂ#&hmm applications
S TADA c OC OB T T
= B l \
b= = ¥
- eQTL risk prediction :
/ gene expression ’

16
Figure from Brueggeman et al., 2020, “Forecasting risk gene discovery in autism with machine learning and genome-scale data”. Scientific Reports



Shortcomings of the Literature

By design they are limited to work with a single disorder, shared genetic information is ignored.

Bag mutational burden as if they are the same.

m=) Disorder specific features are lost.

architecture is ignored.

Perform independent analysis per disorder and  mm) Information coming from the shared genetic
intersect results.

Network-based gene discovery methods can work with at most a handful of integrated gene
interaction networks.

Functional interaction networks (e.g., co-
expression, protein interaction etc.) are

m=) Cannot distinguish where the signal is coming

Satterstrom et al., CELL 2020.
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DeepND — Deep Neurodevelopmental Disorders

Multi—task |earning to analyze | Features: ASD Specific Mutational Burden; Gene-specific features (e.g., pLl) |
comorbid disorders simultaneously.

4. Multitask
D Learning

Layers

Graph convolutional neural networks

2
) ‘» ) )]
& Singletask Learning Singletask Learning
(G C N S) : Layers for ASD ! ! Layers for ID

Analyze multiple gene interaction
networks.

Mixture-of-experts model learns
which gene interaction networks are
informative.

1. D
0\9% %é}

Genomewide Risk Ranking or ASD 2 Genomewide Risk Ranking for ID

NO©

o@ ¥
i g

Adulthood
Gene Coexpression Networks

Embryonic Period scn2a CHD8 Adulthood Embryonic Period

Gene Coexpression Networks - AD N P Gene Coexpression Networks Gene Coexpression Networks

Labels: Known ASD Risk Genes and Evidence Levels;
Non-psychiatric genes
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Gene Co-expression Networks & Features

BrainSpan dataset of Allen Brain Atlas contains gene expression levels in samples from 16 regions of
57 postmortem brains.

We constructed 52 spatio-temporal networks by partitioning the dataset into developmental periods
and clusters of brain regions as also done by Willsey et al.3.
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Willsey, A. J., ... & Murtha, M. T. (2013). Coexpression networks implicate human midfetal deep cortical projection neurons in the pathogenesis of autism. Cell, 155(5), 997-1007.



Features & Labels

® The only feature we use is pLl of the gene.

® Labels for ASD: SFARI gene scoring Cat | — Il as positive

ground truth genes and Krishnan et als non-mental health
genes as negative ground truth.

® Labels for ID: Investigating 5 review papers for positive
labels, same negative set.

'Satterstrom, F. K., ... & Stevens, C. (2020). Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. Cell, 180(3), 568-584.

“Nguyen, H. T, ... & Pinto, D. (2017). Integrated Bayesian analysis of rare exonic variants to identify risk genes for schizophrenia and neurodevelopmental disorders. Genome meglicine, 9(1),
114.



Graph Convolutional Neural Networks
gz

Singletask Learning ¢
Layers for ASD ! !l

Graph convolutional networks are used on arbitrarily
structured data to extract patterns.

Kipf and Welling proposed an efficient propagation rule
which uses a localized first-order approximation of spectral :
graph convolutions. »

Each subsequent layer k of a GCN module used in DeepASD
is defined as

Hli]l = a(D~°SED~°5H,_4[i]lW,_y) i

Kipf and Welling, https://arxiv.org/abs/1609.02907

<
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L o 2 3
input layer output layer -
(a) Graph Convolutional Network (b) Hidden layer activations Labels: Known ASD Risk Genes and Evidence Levels;

Non-psychiatric genes
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ASD Specific
features

Gene-specific features

(pLi, etc.)

1D Specific
features

Mixture of Experts

Learn which GCNs are more informative (i.e., are better at

predicting risk genes).

Use raw input features to weigh each GCN which

corresponds to a neurodevelopmental window.

52 Spatio-Temporal Gene

Co-expression Networks .

)

ASD GCN
Module

DeepASD Module

Genome-Wide Risk
Assestment For ASD

Genome-Wide Risk
Assestment For ID

Genomewide Risk Ranking or ASD

Embryonic Period SCNZA CH D8 Adulthood

Gene Coexpression Networks AD NP Gene Coexpression Networks Geni
2 | 1

Labels: Known ASD Risk Genes and Evidence Levels;
Non-psychiatric genes
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inputl

4

outputl

I\/IuIt|task Learning

In Multitask Learning (MTL), there are a set of general learning task, all or at least a
subset of whom are assumed to be related to each other.

Feature transformation approach is one of the MTL methods where the feed-
forward network is trained to learn a common feature representation.

input2

inputl

v

output2

outputl

Learns shared
weights

Learns task-specific
weights

input2

v

v

output2

I Features: ASD Specific Mutational Burden; Gene-specific features (e.g., pLI) I
V> 0 <

Labels: Known ASD Risk Genes and Evidence Levels;
Non-psychiatric genes
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Experimental Setup: 3-1-1 Cross Validation
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ID

ASD
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Results — Performance Comparison
AUROC & AUPR distributions
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Matthew's Correlation Coefficient

Results — Performance Comparison - cont’d

Matthew’s Correlation Coefficient with respect to varying rank percentage thresholds
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Results — Performance Comparison - cont’d

Precision- Recall Curve Comparisons over Final Rankings
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Informatlve Neurodevelopmental Windows
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Network Analyses
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Novel Predictions in shared CNV regions

* NIPA2
* isan ASD E3-E4 gene which encodes a magnesium transporter.
5t decile for ASD, top decile for ID.

* Its linkage to Prader-Willi Syndrome! which also suggests that NIPA2 might is
an important candidate for ID rather than ASD.

* MICAL3
* related to actin and Rab GTPase binding and cytoskeletal organization.

 top decile for both ASD and ID.
* low prior, no other gene discovery algorithm points to it.

» ST-Steiner? and Satterstrom et al.3 have pointed to the importance of
cytoskeletal organization function in ASD.

1. Goytain et al., Journal of Physiology-Cell Physiology 2008.
2. Norman and Cicek, Bioinformatics 2019.

3. Satterstrom et al., CELL 2020.



Novel Predictions - cont’d

* /BTB20

Transcriptional repressor, important for postnatal growth.
is an ASD E1 gene and CHDS target.

500t gene in Evidence-based SVM ranking.

Last decile DeepND for ASD but higher chance for ID.

Shown to be related to Primrose Syndromel? which is specifically
characterized by intellectual disability.

1. Cordeddu et al., Nature genetics 2014.
2.  Cleaver et al., American Journal of Medical Genetics Part A 2019.



Novel Predictions - cont’d

e IMTK2
* nerve growth factor (NGF)-TrkA signaling and plays a role in spermatogenesis.
ranked 2" for ASD and 7th for ID by DeepND.
Not in top 1000 for other algorithms.
Target of CHD9 and FMRP.

1. Goytain et al., Journal of Physiology-Cell Physiology 2008.
2. Norman and Cicek, Bioinformatics 2019.

3. Satterstrom et al., CELL 2020.



Conclusions

* DeepND is
* the first multitask gene risk discovery algorithm which can work on comorbid
disorders.

 can utilize multiple networks and deconvolve the informativeness of each
gene interaction network considered.

* Can be generalized to work with any combination of
disorders/diseases with shared genetic architectures.

* Predicts several novel genes for ASD and ID and helps dissecting out
ASD and ID specific genes.
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HIBIT 2021

VIRTUAL

BILKENT UNIVERSITY
ANKARA
September 10 - 11, 2021

Due to COVID-19, HIBIT 2021 will be conducted online.

Stay tuned #HIBIT2021
Follow us @HIBIT2021

RSG-Turkey Student Symposium: September 12 - 13, 2021

Abstract Submission

Submission deadline: July 19, 2021, 23:59 (UTC+3).

Author notification: August 16, 2021.

Registration

Registration deadline: September 3, 2021, 23:59 (UTC+3).
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