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Çağdaş makina öğrenmesi yüksek başarımlı hesaplamadır
Facebook Example

11Source: Advancing state-of-the-art image recognition with deep learning on hashtags

Deep Learning is Unique

Data & Model Complexity / Hardware Resources

Accuracy

Deep Learning

Other Methods

10

• (veri, model, ve hesaplama eksenlerin) ölçeklemesi makina
öğrenmesinin başarısının temelini oluşturuyor

Slide source: Misha Smelyanskiy (Facebook AI co-design director)
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Training Neural Networks

• Training is to adjust the weights (W) in the connections of the 
neural network, in order to change the function it represents. 

1

2

3

4

5

6

w1,3

w1,4
w1,5 w2,3

w2,4

w2,5

w3,6

w4,6

w5,6

A “shallow” neural network with only one hidden layer 
(nodes 3,4,5), two inputs and one output. 
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Only parameters are 
weights for simplicity (i.e.
ignore bias parameters)

W: the matrix of weights 
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Deep Neural Network Training

conv1 conv2 conv3 softmax

update 
model 

weights

∇D(0:1024) ∇D(0:1024) ∇D(0:1024)

∇Wi
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∑

∇W = weight gradients, “weight_diff”
∇D = data gradients, “bottom_diff”

Is this 
a cat?
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Gradient Descent (Bayır inişi) 

Wt+1←Wt −α ⋅∇W f (W
t, x)

• Also called the steepest descent algorithm
• In order to minimize a function, move towards the opposite 

direction of the gradient at a rate of α.
• α is the step size (also called the learning rate)
• Used as the optimization backend of many other machine 

learning methods (example: NMF)
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Stochastic Gradient Descent (olasılıksal bayır inişi, SGD)

• fi(W): loss incurred by the parameters W w.r.t. the ith sample 
• Performance and parallelism requires batch training
• Larger batch sizes hurt convergence as they get trapped easily
• SGD escapes sharp local minima due to its “noisy” gradients

Assume f (Wt, x) = 1
n

fi (W
t, x)

i=1

n

∑

Wt+1 ←Wt −α ⋅∇W fi (W
t, x)

Pure SGD: compute gradient using 1 sample

f is not going down for every iteration

Wt+1←Wt −α ⋅
1
b

∇W fi (W
t, x)

i=k+1

k+b

∑
Mini-batch: compute gradient using b samples
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Yapay Sinir Ağlarının Eğitimi

• Training is performed using an optimization algorithm like SGD
• SGD needs derivatives.
• The algorithm to compute derivatives on a neural network is 

called back-propagation (geri yayılım).
• The back-propagation algorithm is not a training algorithm
• Idea: Repeated application of the chain rule from calculus

Back-propagation is just 
a special case of the 
reverse mode 
automatic/algorithmic 
differentiation



Parallelization Opportunities

1. Data parallelism 
Distribute* the input (sets of images, text, audio, etc.)
a) Batch (yığın) parallelism
- Distribute each full sample to a different processor
- When people mention data parallelism in literature, 

this is what they mean 99% of the time
b) Domain (tanım kümesi) parallelism
- Subdivide samples and distribute parts to processors.

2. Model parallelism: 
Distribute the neural network (NN), i.e. its weights

3. Pipeline (veri hattı) parallelism: 
Inter-batch parallelism, pipelined through NN layers

*: “Distribute”, dagitmak = giving parts to processors (in contrast to replicating)



Batch Parallelism #1

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information 
processing systems. 2012.

• The fetching and updating of gradients in the parameter server can 
be done either synchronously or asynchronously.

• Both has pros and cons. Over-synchronization hurts performance 
where asynchrony is not-reproducible and might hurt convergence

11



Batch Parallelism #2

Options to avoid the parameter server bottleneck
1. For synchronous SGD: Perform all-reduce over the network 

to update gradients (good old MPI_Allreduce)
2. For asynchronous SGD: Peer-to-peer gossiping

w1

w2

Worker 1 Worker 3

Worker 2

Data Data

Data

Peter Jin, Forrest Iandola, Kurt Keutzer, “How to scale distributed deep learning?” 
NIPS ML Sys 2016 12



Batch Parallel SGD training of NNs as matrix operations

N = the number of outputs
M = the number of inputs
B = the size of the minibatch

Xin: input 
activations Xout: output 

activations

The impact to parallelism:
• W is replicated to processor, so it doesn’t change
• Xin and Xout gets skinnier if we only use data parallelism, i.e.

distributing b=B/p mini-batches per processor
• GEMM performance suffers as matrix dimensions get smaller and 

more skewed
• Result: Batch parallelism can hurt single-node performance

W: weights
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Batch Parallel SGD training of NNs as matrix operations
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1. Weight matrices (W) are 
replicated on each process

2. Communication only happens 
during gradient reductions

∇Y= ∂L/ ∂Y = how did the loss function 
change as output activations change?
∇X= ∂L/ ∂X
∇W= ∂L/ ∂W

Recall:



Batch Parallel Strong Scaling

° But processor (işlemci) utilization goes down significantly for P>>1
• Result: Batch parallel has poor strong scaling

° Per-iteration communication cost of batch parallelism is 
independent of the batch size: 

• larger batch à less communication per epoch (devir, full 
pass over the data set)
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One epoch training time of AlexNet computed on a single KNL 15



Problems with Batch Parallelism

§ Can not train large models due to single node memory limitations 
§ Batch parallel scaling is limited to batch size B

• Larger Batch -> higher strong scaling efficiency
§ But vanilla SGD loses efficiency for large batch sizes
§ Use LARS (Layer-wise Adaptive Rate Scaling) instead

Ginsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with 
Layer-wise Adaptive Rate Scaling." (2018).

Technical Report

(a) Training without LARS (b) Training with LARS

Figure 3: LARS: Alexnet-BN with B=8K

There is a relatively wide interval of base LRs which gives the "best" accuracy. for example, for
Alexnet-BN with B=16K LRs from [13;22] give the accuracy ⇡ 59.3, for B=32k, LRs from [17,28]
give ⇡ 57.5

Figure 4: Alexnet-BN, B=16K and 32k: Accuracy as function of LR

Next we retrained Resnet-50, ver.1 from He et al. (2016) with LARS. As a baseline we used B=256
with corresponding top-1 accuracy 73%. 7

Table 4: ResNet50 with LARS.

Batch LR policy � warm-up accuracy, %
256 poly(2) 0.2 N/A 73.0
8K LARS+poly(2) 0.6 5 72.7

16K LARS+poly(2) 2.5 5 73.0
32K LARS+poly(2) 2.9 5 72.3

7 Note that our baseline 73% is lower than the published state-of-the-art 75% Goyal et al. (2017) and Cho et al.
(2017) for few reasons. We trained with the minimal data augmentation (pre-scale images to 256x256 and use
random 224x224 crop with horizontal flip). During testing we used one model and 1 central crop. The state-of-
the art accuracy 75% was achieved with more extensive data augmentation during testing, and with multi-model,
multi-crop testing. For more details see log files https://people.eecs.berkeley.edu/⇠youyang/publications/batch.

6
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Model Parallelism

Interpretation #1: Partition your neural network into processors
Interpretation #2: Perform your matrix operations in parallel

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information 
processing systems. 2012.

M
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Figure 1: An example of model parallelism in DistBelief. A five layer deep neural network with
local connectivity is shown here, partitioned across four machines (blue rectangles). Only those
nodes with edges that cross partition boundaries (thick lines) will need to have their state transmitted
between machines. Even in cases where a node has multiple edges crossing a partition boundary,
its state is only sent to the machine on the other side of that boundary once. Within each partition,
computation for individual nodes will the parallelized across all available CPU cores.

3 Model parallelism

To facilitate the training of very large deep networks, we have developed a software framework,
DistBelief, that supports distributed computation in neural networks and layered graphical models.
The user defines the computation that takes place at each node in each layer of the model, and the
messages that should be passed during the upward and downward phases of computation.3 For
large models, the user may partition the model across several machines (Figure 1), so that respon-
sibility for the computation for different nodes is assigned to different machines. The framework
automatically parallelizes computation in each machine using all available cores, and manages com-
munication, synchronization and data transfer between machines during both training and inference.

The performance benefits of distributing a deep network across multiple machines depends on the
connectivity structure and computational needs of the model. Models with a large number of param-
eters or high computational demands typically benefit from access to more CPUs and memory, up
to the point where communication costs dominate. We have successfully run large models with up
to 144 partitions in the DistBelief framework with significant speedups, while more modestly sized
models show decent speedups for up to 8 or 16 partitions. (See Section 5, under the heading Model
Parallelism Benchmarks, for experimental results.) Obviously, models with local connectivity struc-
tures tend to be more amenable to extensive distribution than fully-connected structures, given their
lower communication requirements. The typical cause of less-than-ideal speedups is variance in
processing times across the different machines, leading to many machines waiting for the single
slowest machine to finish a given phase of computation. Nonetheless, for our largest models, we can
efficiently use 32 machines where each machine achieves an average CPU utilization of 16 cores, for
a total of 512 CPU cores training a single large neural network. When combined with the distributed
optimization algorithms described in the next section, which utilize multiple replicas of the entire
neural network, it is possible to use tens of thousands of CPU cores for training a single model,
leading to significant reductions in overall training times.

4 Distributed optimization algorithms

Parallelizing computation within the DistBelief framework allows us to instantiate and run neural
networks considerably larger than have been previously reported. But in order to train such large
models in a reasonable amount of time, we need to parallelize computation not only within a single

3In the case of a neural network ‘upward’ and ‘downward’ might equally well be called ‘feedforward’ and
‘backprop’, while for a Hidden Markov Model, they might be more familiar as ‘forward’ and ‘backward’.

3

Figure shows both inter-
layer model parallelism 
(a.k.a. pipeline parallelism) 
and intra-layer model 
parallelism
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Model Parallel SGD training of NNs as matrix operations
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Combinations of various parallelism opportunities

§ There are several different ways to combine DNN training 
parallelism opportunities.

- It helps to think in terms of matrices again.
§ We will exploit communication-avoiding (iletişimden
kaçınan) matrix algorithms which trade off some storage 
(judicious replication) in order do reduce communication.

- Deep Learning community is already OK with data or 
model replication in many cases

B B B

C C C
1D 2D 3D

2.5D1.5D

A succinct classification of parallel matrix multiplication algorithms 

19
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Batch & Model Parallel SGD training of NNs as matrix operations

Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, Aydın Buluç. "Integrated Model, Batch, and Domain Parallelism 
in Training Neural Networks." ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’18)
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How to implement hybrid parallelism

1. Do it yourself manually on PyTorch matrices, if you understand 
how your preferred hybrid parallelism maps to matrices

2. There are also tools to simplify, such as Mesh-Tensorflow

Koanantakool P, et al. Communication-avoiding parallel sparse-dense matrix-matrix multiplication. IPDPS, 2016
Shazeer N, et al. Mesh-TensorFlow: Deep Learning for Supercomputers. NeurIPS. 2018

21



Integrated Batch + Model Scaling

° For large processes integrated could provide up to 
2x speedup

22



Convolutional neural networks (CNNs, evrişimli sinir ağları)

Left: Vincent Dumoulin, Francesco Visin - A guide 
to convolution arithmetic for deep learning

Bottom: Chellapilla, K., Puri, S., & Simard, P. 
(2006). High performance convolutional neural 
networks for document processing.

You can convert direct 
convolutions to matrix 
multiplies with overhead 
proportional to the ratio of 
overlap (örtüşme, which is 
function of stride length -
adım aralığı -) to the filter 
size

https://arxiv.org/abs/1603.07285


More on CNNs as matrices

AlexNet (a CNN with fully connected layers)

Chellapilla, K., Puri, S., & Simard, P. (2006). 
High performance convolutional neural 
networks for document processing.



Domain (tanım kümesi) Parallel

° The general idea is the same as halo regions or 
ghost zones used to parallelize stencil codes in HPC

• Before a convolution, exchange local receptive 
field boundary data

GPU1 GPU2

GPU3 GPU4

64 px
64 + 1 + 1 px

GPU1 GPU2

GPU3 GPU4

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR 
Workshop Track, 2018 25



Communication Complexity of Domain Parallel

° Additional communication for halo exchange during 
forward and backwards pass

• Negligible cost for early layers for which 
activation size is large (i.e. convolutional)

64 + 1 + 1 px

GPU1 GPU2

GPU3 GPU4

26



Domain Parallel Scaling

Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018
Figure: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.

° Domain parallel scaling on V100 GPUs
• B=32, C=64, K=3, D=1, R=1

27



Integrated Batch, Domain, and Model Parallel

° Batch + Model for layers with small activation size and 
large parameters (fully-connected layers - tam 
bağlantılı katmanlar - and transformer networks)

° Batch + Domain for layers with large activation sizes 
(convolutional layers, evrişimli katmanlar)

28



Integrated Batch, Domain, and Model Parallel

29



Pipeline (veri hattı) Parallelism

• Petrowski A, Dreyfus G, Girault C. Performance analysis of a pipelined backpropagation parallel 
algorithm. IEEE Transactions on Neural Networks. 1993 Nov;4(6):970-81 (original idea)

• Huang Y, Cheng Y, Chen D, Lee H, Ngiam J, Le QV, Chen Z. GPipe: Efficient Training of Giant Neural 
Networks using Pipeline Parallelism. NeurIPS, 2019 (figure source)

• Pipeline parallelism divides the input mini-batch into smaller micro-
batches, enabling different GPUs to work on different micro-batches 
simultaneously. Gradients are applied synchronously at the end.

• Without micro-batching, pipelining would not expose any real 
parallelism (i.e., layers would merely be processed by different GPUs)



Pipeline (veri hattı) Parallelism

• Pipeline parallelism is a mix of (inter-layer) model parallelism, as it 
parallelizes across the inter-layer NN model structure, and batch 
parallelism, as it needs micro-batches of data for filling the pipeline.

• Pipeline bubbles: start of the forward propagation on a minibatch 
requires the backprop of the previous minibatch to complete

• Contribution of pipeline parallelism to the total available parallelism is 
a multiplicative factor that is bounded by the NN depth. Without a 
deep network, all micro-batching would achieve is batch parallelism. 



GPipe and PipeDream make different tradeoffs
GPipe

Pipeline flushes 
expensive

High memory footprint
from weight versionsPipeDream

Pipeline parallelism: synchronization of the weight matrix

In the backpropagation, you need to compute gradients using the same weight 
matrix W you used during forward propagation:
1. Either each process can store its own W: W1, W2,…, Wp, effectively 

increasing memory footprint to match batch parallelism
2. Or we do periodic flushes so we can use one synchronized W.

Figure by
Deepak Narayanan 



Summary of distributed deep learning

§ Large batch size training often lead to suboptimal learning, but this 
can be mitigated with better learning algorithms such as LARS

§ Integrated parallelism uses communication-avoiding algorithms to 
extend scaling beyond batch size

§ Integrated parallelism optimally combines model and data (batch and 
domain) parallelism and often performs better than each extreme.

§ It is often better [1] to use (inter-layer) model parallelism for fully 
connected layers (large parameters – think transformers -), and 
batch parallelism for convolutional layers (large activations)

§ Pipeline parallelism can also be combined (in principle) with intra-
layer model parallelism.

[1] Krizhevsky, Alex. "One weird trick for parallelizing convolutional neural networks." arXiv
preprint arXiv:1404.5997 (2014). 33



Semi-supervised (yarı gözetimli) Learning

• A (small) subset of data has training labels, but most of 
the data is unlabeled

• Label propagation (etiket yayma) is the canonical graph 
semi-supervised learning algorithm

Feature extractor �✓

FC
+

softm
ax

Network f✓

Phase 1:
Train for T epochs with
Ls(XL, YL; ✓)

(labeled examples only)

Train for 1 epoch with
Lw(X,YL, ŶU ; ✓)

(all examples)

Extract descriptors V

Compute affinity A (9)

W  A + A>

W  D�1/2WD�1/2

Use �✓

Solve (10)
Label propagation

Phase 2: Iterate T 0 times

: labels : missing labels : pseudo-labels (size proportional to certainty !i)
Figure 2. Overview of the proposed approach. Starting from a randomly initialized network, we first train it in a supervised fashion on
the labeled examples. Then we initiate an iterative process where at each iteration we compute a nearest neighbor graph of the entire
training set in the feature space of the current network, we propagate labels by transductive learning, and then we train the network on the
entire training set, with true labels or pseudo-labels on the labeled or unlabeled examples respectively. The pseudo-labels are weighted per
example and per class according to prediction certainty and inverse class population, respectively.

1 labeled example 3 labeled examples 10 labeled examples
Figure 3. Toy example with 300 examples demonstrating label propagation for different number of labeled examples. Triangle markers
correspond the labeled examples and circles to the unlabeled ones which are finally pseudo-labeled by label propagation. The class is
color-coded and the size of the circles corresponds to weight !i. The true labels are the same as the example of Figure 1 (top).

following iterative process. First, we extract descriptors V
on the entire training set X and compute nearest neighbors
to construct the adjacency matrix W . Second, we perform
label propagation by solving linear system (10) and assign
pseudo-labels to unlabeled examples XU by (7). Finally,
we train the network for one epoch on the entire training
set X using the weighted loss Lw (12). We repeat this it-
erative process for T 0 epochs. The above is summarized in
Algorithm 1.

Procedure OPTIMIZE() refers to the mini-batch opti-
mization of the corresponding loss term for one epoch, i.e.
all examples are fed to the network once. More details about
batch construction are given in the implementation details.

Combination with other approaches. Our contribution
falls in the case of pseudo-label loss in the form of (3). It is
orthogonal to approaches that use unsupervised loss, for in-

stance (4), applied to both labeled and unlabeled examples.
Combination of the two comes in a straightforward way by
adding term (4) to the total loss optimized in lines 4 and 16
of Algorithm 1. This is exactly the way we combine the
proposed approach with the state-of-the-art Mean-Teacher
approach [38] in our experiments.

Discussion. In an inductive framework, if zi/
p
dii is re-

placed by the network output f✓(xi) in the smoothness
term of (8), then this becomes an unsupervised loss term,
e.g. like (4), only now it encourages consistency between
nearby example predictions. And indeed such solution is
adopted e.g. by Weston et al. [41]. This is not very effi-
cient because the adjacency matrix is typically sparse with
non-zero-elements only on nearest neighbors, and then the
gradient of the smoothness term will propagate from each
example to its neighbors only at each iteration.



Graph Neural Networks (GNNs, çizge sinir ağları) 

Electric Grid

Transportation

Proteomics

Power Grid

Materials Discovery

Particle Physics

GNNs are finding 
success in many 

challenging scientific 
problems that involve 
interconnected data. 

• GNNs are computationally intensive to train. 
• Distributed (dağıtımlı) training need to scale to large GPU/node counts 

despite challenging sparsity (seyreklik) .

• Graph classification
• Edge classification
• Node classification



How to use GNNs

How to use GNNs?

Figure source: Petar Veličković

düğüm sınıflandırma

çizge sınıflandırma

bağlantı sınıflandırma



Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures 
currently in existence, […] and most other deep learning architectures can 
be understood as a special case of the GNN with additional geometric 
structure” Bronstein, Michael M., et al. "Geometric Deep Learning: 

Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

This is a graph neural network

… we pose chip floorplanning as a 
reinforcement learning problem, 
and develop an edge-based graph 
convolutional neural network
architecture… 



Graph convolutions (Çizge Evrişimi)

Graph convolution: Feature (öznitelik) aggregation from neighbors

v1

v2

v5
v3

3.2  5.4  …   1.3

O(f) feature vector

v4v6

3.2  5.4  …   1.3
…

2.7  1.6  …   4.1
…

0.9  2.1  …   3.8
…

AT H

W =

0.9  2.1  …   3.8
2.7  1.6  …   4.1

• GNN is an umbrella term for any neural network that performs graph 
representation learning.

• CAGNET focuses on Graph Convolutional Networks (GCNs)
• We are working on adding graph attention layers



Full-graph vs. mini-batch SGD

Full-graph training: 
• Train on entire training set
• Slower convergence per epoch
• Faster training per epoch
• Large memory footprint
• Focus of this presentation
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Vertices
(düğüm, nokta)

Images
Mini-batch SGD:
• Train on a batch of samples
• Faster convergence per epoch
• Slower training per epoch
• Requires graph sampling
• Potentially smaller memory footprint
• Focus of future work
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Vertices Images

mini-batch



• Vertices (unlike images) are dependent on each other
• L-layer GNN uses L-hop neighbors for vertices in batch
• Must store almost the whole graph for any minibatch for power-law graphs
• How to subsample from L-hop neighborhood and keep accuracy?
• CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient 

descent to avoid such issues: https://github.com/PASSIONLab/CAGNET/

No dependencies Layered dependencies

sample

Full-graph vs. mini-batch SGD

https://github.com/PASSIONLab/CAGNET/


Graph convolutions
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Input Graph GNN of Input Graph

• Recall that a CNN can have different *channel* dimension at each layer.
• GNNs also have different embedding (gömü) dimension at each layer



Embeddings (gömüler)

• Mapping objects into vector spaces is an embedding

Figure source: William Hamilton

Goal:    
similarity(u,v) ≈ zuT zv



GCN training in matrix notation

Forward Propagation:   Backward Propagation:
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Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (n⇥n)
H

l Embedding matrix in layer l (n⇥ f)
W

l Weight matrix in layer l (f ⇥ f)
Y

l Matrix form of @L
@W l

ij
(f ⇥ f)

Z
l Input matrix to activation function (n⇥f)

G
l Matrix form of @L

@Zl
ij

(n⇥ f)

� Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
↵ Latency
� Reciprocal bandwidth



Bottleneck of full-graph GCN training
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Cost(SpMM) >>> Cost(DGEMM)

(mostly because W is so small) 



GCN training

• Each node is initialized with a feature vector
– 𝐻! has initial feature vector per node (𝑛 𝑥 𝑓)

• Each node aggregates vectors of its neighbors, applies a weight
• Each layer computes gradients

𝐴 ∈ 𝑛 𝑥 𝑛

𝐻! ∈ 𝑛 𝑥 𝑓!

𝐺! ∈ 𝑛 𝑥 𝑓!

for i = 1 … E
for l = 1 … L

Zl = AT * Hl-1 * Wl
Hl = σ (Zl)

...
for l = L-1 … 1

Gl = A * Gl+1 * (Wl+1)T ⊙ σ’(Zl)
dH/dW = (Hl-1)T * A * Gl

𝑊! ∈ 𝑓! "# 𝑥 𝑓!

• A is sparse and f << n, so the main workhorse is SpMM (sparse 
matrix times tall-skinny dense matrix)



The computation cube of matrix-matrix multiplication

Matrix multiplication: "(i,j)	Î n	x	n,	 C(i,j)	=	Sk A(i,k)B(k,j),

A B
C

The computation (discrete) cube:

• A face for each (input/output) matrix 

• A grid point for each multiplication

1D algorithms 2D algorithms 3D algorithms

.5D algorithms interpolate between two



Distributed SpMM algorithms

• 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
• Right before reduction, sA-1.5D uses c times more dense-matrix memory

• Stationary A, 1.5D algorithm
• A is split on a p/c-by-c grid 

• Stationary C, 2D algorithm
• Memory optimal

A is sparse, B and C are dense



Distributed SpMM algorithms
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Illustration of the 3D algorithm on a 𝑝/𝑐 × 𝑝/𝑐 × 𝑐 process grid

C int
ijk = Ailk

l=1

p/c

∑ Bljk



Communication analysis
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Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (n⇥n)
H

l Embedding matrix in layer l (n⇥ f)
W

l Weight matrix in layer l (f ⇥ f)
Y

l Matrix form of @L
@W l

ij
(f ⇥ f)

Z
l Input matrix to activation function (n⇥f)

G
l Matrix form of @L

@Zl
ij

(n⇥ f)

� Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
↵ Latency
� Reciprocal bandwidth

CAGNET Cost Analyses (per process)
Algorithm Latency Bandwidth Memory
1D lgP + 2P 2nf + f2 nnz(A)+nfL

P

1.5D 2 P
c2

lg P
c2

2nf
c + 2nfc

P
nnz(A)+nfL

P + nfc
P

2D 5
p
P + 3 lgP 8nfp

P
+ 2nnz(A)p

P

nnz(A)+nfL
P

3D 4P 1/3 2nnz(A)

P2/3 + 12nf
P2/3

nnz(A)+nfL
P + nfc

P



Communication avoidance (CA) in GNN Training

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. SC’20

§ Scales with both P (GPUs – x axis) and c (replication layers in CA algorithms)
§ This is 1 GPU/node on Summit (all GPUs per node results in paper)
§ Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)



2D vs. 3D performance

Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. SC’20

• 64 hidden-layer activations
• Communication scales with P, consistent with analysis
• Computation scales less well à explained in paper



Parallel GNN training conclusions

– Graph representation learning is transforming science
» Lots of deep learning problems on graphs

– Can solve DL on graphs with GNNs
» But must distribute training

– Alok’s work
» Can formulate GCN training as SpMM
» Distribute GCN training with distributed SpMM
» Code: https://github.com/PASSIONLab/CAGNET

– Future work
» Distributed sampling for mini-batch training [next slide]
» Beyond graph convolutions [after next slide]

https://github.com/PASSIONLab/CAGNET


PASSION Lab

Bundan sonrası extra slaytlar

Our work is funded by

http://passion.lbl.gov

Parallel Algorithms for 
Scalable Sparse 
computatIONs

http://passion.lbl.gov/


Memory requirements of GCN training

During training
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f: feature dimension

L layers
Memory = ∑2345 𝑛𝑓2 ≈ 𝑂 𝑛𝐿𝑓

• For n = 1B, L = 5, f = 512, we are looking at 20TB of RAM
• Sampling based mini-batch training would mitigate the issue



The Weisfeiler-Leman Heuristic

Given graph G(V,E)
adj(v) is the set of neighbors of v

Initialize all nodes to the same color
Repeat until colors are “stable”

For all nodes v
s(v) = {colors(adj(v)), color(v)} 
color(v) = hash(s(v))

*The actual colors are irrelevant



The Weisfeiler-Leman Heuristic

Figure source: Michael Bronstein



What graph convolution can not learn

• To match the power of the WL heuristic (or more precisely 
WL-1), we need our GNN aggregation function to be a 
multiset injection



What graph convolution can not learn

“max” aggregator
can not distinguish 
these two graphs

Neither “max” nor ”mean” 
can distinguish these two 
graphs



Self-attention

The weight wij is not a parameter, as in a normal neural net, but it 
is derived from a function over 𝐱i and 𝐱j. Example: dot product



Graph attention: making edge weights learnable

SDDMM: Sampled dense-dense 
matrix multiplication

GrB_mxm(W, A, H, H, … );
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1 h1

h4h2

h3 h6

w21

w41

w31 w61

h1
h2

w21= ⨂

⨂

A H

HT

W

=
w21 w31w41 w61

Sparse

same structure 
with A
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