] Berkeley

UNIVERSITY OF CALIFORNIA

~
rrerrrrr«

BERKELEY LAB

Derin Sinir Aglarinin ve Cizge Sinir Aglarinin
Egitiminde Paralellestirme

Aydin Bulucg
Computational Research Division, LBNL
EECS Department, UC Berkeley




Lawrence Berkeley National Laboratory

Lawrence introduces LBNL the first e Takim bilimi
bi team scuenco1931 National Lab ' ' ey ee g
g - . | « 14 Nobel 6dili

www.lbl.gov/nobelists/

« 1700+ tam zamanli
bilim insani

« 500+ doktora ustu
arastirmaci

o009

Fizik, Kimya, Malzeme Bilimi, Bilgisayar Bilimi, Biyoloji, Cografi
Bilimler, iklim Bilimi, Enerji Teknoloijileri, vs.


http://www.lbl.gov/nobelists/

Computing in Lawrence Berkeley National Lah
cs.lbl.gov ‘

Energy Sciences Network
NERSC

Computational Research Division
» Applied Mathematics

« Data Science and Technology |
« Computer Science

« Computational Science

2 o < BT s '\\\
- . B w
Ty - ¥ A \\\\\ — k.
b -
M paglpg Ptets 4 l‘ : é.::q" ..ﬂ‘ \\\
< ‘“' - ol — v *TW,‘: t- - .“.-.d’ ). .
¢ : ——— .- ‘ '
dddd “3 L — L ;
- g ; -
e W
J ! el r» "4
T Azc o ~ 5 : - “
7 AN A .
; H 3 o -~ 4‘—‘". i .'J" AT :""
4&7\ »yﬁ‘ ;‘M; ~
x REARARRAT I ARRRRRTRTANANS An/4’
) Tl 5
B - w’ .
-’ > - st



http://cs.lbl.gov/

Cagdas makina ogrenmesi yuksek basarimli hesaplamadir

88

I I
Source task

o 0 ImageNet (target = source)
e—e |Instagram (940M, 1.5k tags) ||

86 — - - —-—-—-

Accuracy

ImageNet top-1 accuracy (in %)

Data & Model Complexity / Hardware Resources

Model capacity (number of mult-add operations)

Source: Advancing state-of-the-art image recognition with deep learning on hashtags

« (veri, model, ve hesaplama eksenlerin) dlceklemesi makina
ogrenmesinin basarisinin temelini olugturuyor

Slide source: Misha Smelyanskiy (Facebook Al co-design director)



Training Neural Networks

 Training is to adjust the weights (W) in the connections of the
neural network, in order to change the function it represents.

Only parameters are
weights for simplicity (i.e.
ignore bias parameters)

W: the matrix of weights

A “shallow” neural network with only one hidden layer
(nodes 3,4,5), two inputs and one output.



Deep Neural Network Training

Is this
a cat?

VD(0:1024) VD(0:1024) VD(0:1024)
<;

X1024

conv3 softmax

VD = data gradients, “bottom_diff”
W = weight gradients, “weight diff”



Gradient Descent (Bayir inisi)

W W' -a -V, f(W,x)

« Also called the steepest descent algorithm

* |n order to minimize a function, move towards the opposite
direction of the gradient at a rate of a.

* ais the step size (also called the learning rate)

« Used as the optimization backend of many other machine
learning methods (example: NMF)
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Stochastic Gradient Descent (olasiliksal bayir inigi, SGD)

fis not going down for every iteration

Assume f(W', x) = 12 fWix) | -
n i=1

W W' -a-V, (W, x)

Pure SGD: compute gradient using 1 sample

1 k+b
W W —a— YV, fi(W,x)
b l=k+1 -IUIJ SUIIJ 10:30 15IUIJ 20IDIJ 25:30 30:30 3500

Mini-batch: compute gradient using b samples

« f(W): loss incurred by the parameters W w.r.t. the ith sample
« Performance and parallelism requires batch training
« Larger batch sizes hurt convergence as they get trapped easily

« SGD escapes sharp local minima due to its “noisy” gradients
8



Yapay Sinir Aglarinin Egitimi

« Training is performed using an optimization algorithm like SGD

 SGD needs derivatives.

« The algorithm to compute derivatives on a neural network is
called back-propagation (geri yayilim).

* The back-propagation algorithm is not a training algorithm

« ldea: Repeated application of the chain rule from calculus

Uwe Naumann

Back-propagation is just  Tjemm—
. Computer Programs
a SpeCIaI Case Of the :{:3 An Introduction to Algorithmic Differenti ation

reverse mode
automatic/algorithmic

] .. 5 Evaluatin
differentiation E oerivativegs
‘ ' Princples and Techniques of

Algorthmic Differentiation

wora




Parallelization Opportunities

1. Data parallelism

Distribute™ the input (sets of images, text, audio, etc.)

a) Batch (yigin) parallelism

- Distribute each full sample to a different processor

- When people mention data parallelism in literature,

this is what they mean 99% of the time

b) Domain (tanim kumesi) parallelism

- Subdivide samples and distribute parts to processors.
2. Model parallelism:

Distribute the neural network (NN), i.e. its weights
3. Pipeline (veri hatti) parallelism:

Inter-batch parallelism, pipelined through NN layers

*. “Distribute”, dagitmak = giving parts to processors (in contrast to replicating)



Batch Parallelism #1

, U——
Parameter Server W = W - ﬂAW

0000
/ 1\
Model DD DD

Replicas DD
Efj Eﬁ =

The fetching and updating of gradients in the parameter server can
be done either synchronously or asynchronously.

Both has pros and cons. Over-synchronization hurts performance
where asynchrony is not-reproducible and might hurt convergence

______________________________________________________________________

' Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information
| processing systems. 2012.

11



Batch Parallelism #2

Options to avoid the parameter server bottleneck

1. For synchronous SGD: Perform all-reduce over the network
to update gradients (good old MPI_Allreduce)

2. For asynchronous SGD: Peer-to-peer gossiping

Data Worker 2

&0

0
= o

Worker 1 Worker 3

. Peter Jin, Forrest landola, Kurt Keutzer, “How to scale distributed deep learning?” |
' NIPS ML Sys 2016 12



Batch Parallel SGD training of NNs as matrix operations

M B B
N = the number of outputs
_ M = the number of inputs
N X - N B = the size of the minibatch
X, input
W: weights activations X, output

activations M

The impact to parallelism:

« W is replicated to processor, so it doesn’'t change

« X, and X, gets skinnier if we only use data parallelism, i.e.
distributing b=B/p mini-batches per processor

« GEMM performance suffers as matrix dimensions get smaller and
more skewed

« Result: Batch parallelism can hurt single-node performance



Batch Parallel SGD training of NNs as matrix operations

1. Weight matrices (W) are
replicated on each process
Py <+ di * P1 i 1
Local 2. Communication only happens
matmul during gradient reductions
Y W X
Recall:
Parameter Server W' =W - JAw
o Oo00000)
intermediate | | | €= P, * P, w/ / Aw l l[ \\
AllReduce gig';‘fj Local wee (U0 (OO (OO
Ong:'DOS:)ZSed br0006) matmu Replicas DD DC] DD
XT Sl::::s @ ﬁ @
VW vY
g . R
Vy=dL/ dY = how did the loss function
| . . change as output activations change?
i Y. Vx= L/ aX
matmu Vw= oL/ oW
VX WT vY

14



Batch Parallel Strong Scaling

° Per-iteration communication cost of batch parallelism is
independent of the batch size:

 larger batch = less communication per epoch ( , full
pass over the data set)

Toomm (batch) = 231 (cdog(P) + BL51|W;))

° But processor ( ) utilization goes down significantly for P>>1

* Result: Batch parallel has poor strong scaling

04.5 L

Tl

—_
S
~

Best Workload

/

Wm/ﬁﬁ

1 2 4 8 16 32 64 128 256 512 1024 2048
Batch Size—

—_

[e]
w
(S48

One Epoch Time (sec

One epoch training time of AlexNet computed on a single KNL 15



Problems with Batch Parallelism

= Can not train large models due to single node memory limitations
= Batch parallel scaling is limited to batch size B
« Larger Batch -> higher strong scaling efficiency
= But vanilla SGD loses efficiency for large batch sizes
» Use LARS (Layer-wise Adaptive Rate Scaling) instead

AlexNet-BN for ImageNet AlexNet-BN for ImageNet

0.6

o
o
|

Al fl AT NN

I
w
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I
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o
ESY
.

©
N
©
N
|

Top-1 Test Accuracy
Top-1 Test Accuracy

o —— Batch=512 o1 —— Batch=512, Baseline
Batch=8192 Batch=8192, LARS
0.0 0.0 4
0 20 40 60 80 100 0 20 40 60 80 100
Epochs Epochs
(a) Training without LARS (b) Training with LARS

Glnsburg, Boris, Igor Gitman, and Yang You. "Large Batch Training of Convolutional Networks with
. Layer-wise Adaptive Rate Scaling." (2018).



Model Parallelism

P =

3 o Figure shows both inter-
layer model parallelism

« 4 (a.k.a. pipeline parallelism)

£ S and intra-layer model

ks o parallelism

Interpretation #1: Partition your neural network into processors
Interpretation #2: Perform your matrix operations in parallel

______________________________________________________________________

' Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in neural information !
i processing systems. 2012. '

17



Model Parallel SGD training of NNs as matrix operations

B . dis B
di/P‘ Po di/P[
Po Po
P, <« < * P,
AllGather Local
on P sized P, matmul P,
groups
. . X
Y Yintermediate W
intra-layer model parallelism:
di/P
— P, . - 1. Same data passes through
0, "1 . .
r#:tcr:tl P all processes, but this is
Py limited to the mini-batch size
XT 2. Two communication steps
VW vY
di/P B
Low rank di1
- intermediate b
| e R
oca
groups l
VX VX intermediate WT VY 18



Combinations of various parallelism opportunities

» There are several different ways to combine DNN training
parallelism opportunities.

- It helps to think in terms of matrices again.
= We will exploit communication-avoiding (

) matrix algorithms which trade off some storage

(judicious replication) in order do reduce communication.

- Deep Learning community is already OK with data or

model replication in many cases

A succinct classification of parallel matrix multiplication algorithms

1.5D 2.5D
— <

v

1D 2D 3D 19



Batch & Model Parallel SGD training of NNs as matrix operations

B/P, di-1 B/P,
difP; Pos di/P|
Por ‘ o
P < * P1y
H AllGather Local
on Pr Pio | P11 | P12 matmul P10, P11, P12
sized
groups X
Y Yintermediate W
a/P: Low rank Processes are
intermediate — Pos * .
l matrices Local Py Pos, Py 2 D |ndexed .
AllIReduce
on Pc (one per matmul _
P10, P11, P12 sized process) P_ Pr X PC
groups XT
V w v Y
di/P: B/P,
Low rank dis
intermediate Pio Pos
E"l — matrices — Pu * Pc1)1
Lt one per
AllReduce E)rocepss) Local P12
on Pr matmul
sized
groups
Vx V y intermediate WT Vy

i Amir Gholami, Ariful Azad, Peter Jin, Kurt Keutzer, Aydin Bulug. "Integrated Model, Batch, and Domain Parallelism i 20
i in Training Neural Networks." ACM Symposium on Parallelism in Algorithms and Architectures (SPAA’18)



How to implement hybrid parallelism

1. Do it yourself manually on PyTorch matrices, if you understand
how your preferred hybrid parallelism maps to matrices
2. There are also tools to simplify, such as Mesh-Tensorflow

¢ dio
. 01
2.3 d/c . d/c 0,2 d/c
Processor mesh i
(2 rows % 2 cols) ! P Ty L
d 0, . 1,
ol 2 13 1,3 |d/c
dio w i \4
brj 01 N 0 1 _____ 1 0,1 B
brix 2.3 h 2 3 y 2.3

______________________________________________________________________________________________________________________________

i Koanantakool P, et al. Communication-avoiding parallel sparse-dense matrix-matrix multiplication. IPDPS, 2016
» Shazeer N, et al. Mesh-TensorFlow: Deep Learning for Supercomputers. NeurIPS. 2018



Integrated Batch + Model Scaling

° For large processes integrated could provide up to
2x speedup

B=2048, P=8 B=2048, P =32
400 -
3504 200 1
300 1
@ 5501 - 150 - 1.1x
2 L .
£ 200+ £
= = 1
150
100 A J
50 -
0- EEES ; : ] - , -
2x4 4x2 8x1 1x32 2x16 4x8 8x4 16x2 32x1
P X P, P X P,
B =2048, P=128 70 B =2048, P=512
175 1 EEE Computation
60 - Model Comm.
150 A B8 Batch Comm.
125 -

Time (s)

100 - l
751 1.6x
l (2.8x) I I

50 1

25 1

1x128 2x64 4x32 8x16 16x8 32x4 64x2 128x1
P, X P, Pr X Pc 22



Convolutional neural networks (CNNs,

You can convert direct
convolutions to matrix
multiplies with overhead
proportional to the ratio of
overlap ( , Which is
function of stride length

to the filter

size

SN — X
~——

<
-

(5= = S

=

%

-

Input features (Matrix}

CNON =2 2NN =200 =

=
[SEEN
N

Left: Vincent Dumoulin, Francesco Visin - A guide
to convolution arithmetic for deep learning

Bottom: Chellapilla, K., Puri, S., & Simard, P.

(2006). High performance convolutional neural
networks for document processing.

Convolution

n 12
20 ‘l 24
15, 17
24/ 26

Output features
{Matrix)


https://arxiv.org/abs/1603.07285

More on CNNs as matrices

/s= number of

: features
f=input width O, = ({fy- K+ 1)H(Sc- 1))/ 5 Oy output width, S, horizontal subsampling
K, = kernel width O,=((/,- K, + 1)HS,-1))/S, O, output height, S,: vertical subsampling
& [D A 7A KK . Os= output features | Oy= output features _

a o

/=input
height
olo . - = . olo
I/_ ¥ Input: X | Weights: Output: Y y
K, w
KK/
[ [ ] | |
/
[/ | | ]

olo,

Chellapilla, K., Puri, S., & Simard, P. (2006).
High performance convolutional neural
networks for document processing.

3 X S\ N
. |
192 192 128 2048 \/ 2048 \dense
13 13
3 R =
ENER N >
3':f;1;aa 13 dense | |dense)
1000
192 192 128 Max L |
; 2048 2048
. 128 pooling
pooling pooling

5 AlexNet (a CNN with fully connected layers)



Domain (tanim kumesi) Parallel

° The general idea is the same as halo regions or
ghost zones used to parallelize stencil codes in HPC

- Before a convolution, exchange local receptive
field boundary data

64 +1+1
64 px | PX |

GPU1 = GPU2 GPU1  GPU2

GPU3™ GPU4 GPU3 | GPU4

__________________________________________________________________________________________________________

. Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR !
\ Workshop Track, 2018 | 25



Communication Complexity of Domain Parallel

° Additional communication for halo exchange during
forward and backwards pass

* Negligible cost for early layers for which
activation size is large (i.e. convolutional)

64 + 1+ 1 px
L I I
Teomm(domain) = Z (a + BBX iy Xk}, /2)
1=0
L GPU1 | GPU2
+Y  (a+ BBY, YKL, /2)
1=0
L P_1 GPU3 | GPU4
2 log(P — W
+23 (alog(P) + 475 Wil

~
|
o

26



Domain Parallel Scaling

> Domain parallel scaling on V100 GPUs
« B=32, C=64, K=3, D=1, R=1

Resolution GPUs Fwd. wall-clock Bwd. wall-clock
128 x 128 1 2.56 ms (1.0x) 6.63 ms (1.0x%)
2 1.52 ms (1.7x) 3.50 ms (1.9%)
4 1.23 ms (2.1 %) 2.33 ms (2.8 %)
256 x 256 1 10.02 ms (1.0x)  26.81 ms (1.0x)
2 5.34 ms (1.9%) 11.79 ms (2.3 %)
4 3.11 ms (3.2 %) 6.96 ms (3.9x)
512 x 512 1 45.15ms (1.0x) 126.11 ms (1.0x)
2 20.18 ms (2.2x)  60.15 ms (2.1x)
4 10.65 ms (4.2x) 26.76 ms (4.7x%)

' Peter Jin, Boris Ginsburg, and Kurt Keutzer. "Spatially Parallel Convolutions" ICLR Workshop Track, 2018

' Figure: Dumoulin, V., Visin, F.. A guide to convolution arithmetic for deep learning. arXiv:1603.07285, 2016.
N 2 7___'



Integrated Batch, Domain, and Model Parallel

° Batch + Model for layers with small activation size and
large parameters (fully-connected layers
and transformer networks)

° Batch + Domain for layers with large activation sizes
(convolutional layers, )

T :5 log (P, : -
comm = 2. (aog( VR TE dz)+ > (O‘k’g(ﬂ")” P, P " 1>
1 M

P. — 1 |Wj B i i

1€ L 1€Lp

+y (a+/3 X XU KL /2) 2y <a10g B—\W |)

1€l p 1€l p

28



Integrated Batch, Domain, and Model Parallel

B =512, P=512

250 - .
Il Computation
B Model Comm.
200 A B8 Batch Comm.
w 1501
Q
E 3.0x
100 (13.9%)
" I I I
— 1x512 2x256 4x128 8x64 16x32 32x16 64x8 128x4
P X P
B=512, P=2048
70 1
HE Computation
60 - ‘ Model/Domain Comm.
g8 Batch Comm.
50 A
¥ 401
) 2.4x
£ 4.7
£ 30 I (4.7x)
10

4x512 8x256 16x128 32x64 64x32 128x16 256x8 512x4
Py X Pc

B=512, P=1024

120 -

100 ~

Time (s)

EEE Computation
I Model/Domain Comm.
g8 Batch Comm.

2x512 4x256 8x128 16x64 32x32 64x16 128x8 256x4
Pr X P

B =512, P=4096

EEE Computation
{ | Model/Domain Comm.
g8 Batch Comm.

2.0x
(2.9x)

29

8x512 16x256 32x128 64x64 128x32 256x16 512x8 1024x4
Py X P



Pipeline (veri hatti) Parallelism

FO BO Update
Loss
— \ FO Bo Update
Device 3 F. —— B. F, N B, Update
? ‘ FO Tlme BO Update
Device 2 F. B. / L —
_t v (b)
Device 1 F1 B1 Fao | Faa | Faz | Fas| Bas | Baz | Ba1 | Bao Update
$ i Fzo | Fa1 | Fzz | Faa Bza Bzz | Bas Bzo Update
Device 0 Fo— B.
Fio | Fi1 | Fi2 | Fia R Ba Bi> Bi1 Bio Update
‘x / Foo | Foa | Foz | Foa B u bb ! e Boa Boz Bo.1 Boo | Update
Gradients

* Pipeline parallelism divides the input mini-batch into smaller micro-
batches, enabling different GPUs to work on different micro-batches
simultaneously. Gradients are applied synchronously at the end.

* Without micro-batching, pipelining would not expose any real
parallelism (i.e., layers would merely be processed by different GPUs)

+ »  Petrowski A, Dreyfus G, Girault C. Performance analysis of a pipelined backpropagation parallel

: algorithm. IEEE Transactions on Neural Networks. 1993 Nov;4(6):970-81 (original idea)

* Huangy, ChengY, Chen D, Lee H, Ngiam J, Le QV, Chen Z. GPipe: Efficient Training of Giant Neural
Networks using Pipeline Parallelism. NeurlPS, 2019 (figure source)

_________________________________________________________________________________________________________________________



Pipeline (veri hatti) Parallelism

Loss
T T
Device 3 F. B.
t }
Device 2 F. B.
_t {
Device 1 F B:
_t |
Device 0 F. 0

.

Gradients

Fo B.

F

Fo

Time >

(b)

B.

1| Faz | Fsa| Bss | Baz

B.

22 FZ.B BZ.3

Bubble

Update

Update

Update

B0 Update

Update

Update

1 Bio Update

2 Bo.1 Boo | Update

Pipeline parallelism is a mix of (inter-layer) model parallelism, as it
parallelizes across the inter-layer NN model structure, and batch
parallelism, as it needs micro-batches of data for filling the pipeline.

Pipeline bubbles: start of the forward propagation on a minibatch
requires the backprop of the previous minibatch to complete

Contribution of pipeline parallelism to the total available parallelism is
a multiplicative factor that is bounded by the NN depth. Without a
deep network, all micro-batching would achieve is batch parallelism.



Pipeline parallelism: synchronization of the weight matrix

In the backpropagation, you need to compute gradients using the same weight
matrix W you used during forward propagation:
1. Either each process can store its own W: W4, W,,..., W,, effectively
increasing memory footprint to match batch parallelism
2. Or we do periodic flushes so we can use one synchronized W.
GPipe

Operations use weight version from last flush Pipeline
o flush
l

L

Worker 1 4

Worker 2
Worker 3
Worker 4

Pipeline flushes
expensive

—

Time

B ForwardPass [ | Backward Pass

Before: W™, w®, w®, w® High memory footprint
PipeDream After: WP, W®, w®, w® from weight versions

Worker 1
Worker 2
Worker 3
Worker 4

Before: WF)

After: Wf) Figure by
B ForwardPass [ | Backward Pass Deepak Narayanan

Time ——




Summary of distributed deep learning

» | arge batch size training often lead to suboptimal learning, but this
can be mitigated with better learning algorithms such as LARS

» Integrated parallelism uses communication-avoiding algorithms to
extend scaling beyond batch size

» |[ntegrated parallelism optimally combines model and data (batch and
domain) parallelism and often performs better than each extreme.

= |t is often better [1] to use (inter-layer) model parallelism for fully
connected layers (large parameters — think transformers -), and
batch parallelism for convolutional layers (large activations)

» Pipeline parallelism can also be combined (in principle) with intra-
layer model parallelism.

[1] Krizhevsky, Alex. "One weird trick for parallelizing convolutional neural networks." arXiv
. preprint arXiv:1404.5997 (2014). ! 33



Semi-supervised (yari gozetimli) Learning

A (small) subset of data has training labels, but most of
the data is unlabeled

Label propagation ( ) is
semi-supervised learning algorithm

Phase 1:
Train for T' epochs with
LS (XL ) YL ) 9)

(labeled examples only)

‘*‘%

AAA : labels

Xeunjos + Dy

Extract descriptors V'
Compute affinity A (9)

W «— A+ AT

o —1/2 —1/2
> o wepn Pwpnl
O
O/
A b
° (9 (/@
*Oe
(?[IO

© : missing labels

the canonical graph

Train for 1 epoch with
Lw(Xa YLa YU; 9)
(all examples)

O @ @ : pseudo-labels (size proportional to certainty w;)



Graph Neural Networks (GNNs, )

_ Materials Discovery
Proteomics

o -

GNNs are finding
success in many
challenging scientific
problems that involve
interconnected data.

Graph classification
Edge classification
* Node classification

Particle Physics

* GNNs are computationally intensive to train.
e Distributed ( ) training need to scale to large GPU/node counts

despite challenging sparsity ( ).



How to use GNNs

Node classification

7= f(hy)
: @/O . GNN | ~ Graph classification
[ InAAAAAAAAAN) YA
S | o= (i)
I Inputs ~ Latents
7. Link prediction
1 z;; = f(hi, by, e)

Figure source: Petar VeliCkovi¢



Motivation for Graph Neural Networks

“GNNs are among the most general class of deep learning architectures
currently in existence, [...] and most other deep learning architectures can
be understood as a special case of the GNN with additional geometric

structure” Bronstein, Michael M., et al. "Geometric Deep Learning:
Grids, Groups, Graphs, Geodesics, and Gauges." (2021)

NEWS - 20 FEBRUARY 2020 it O
Powerful antibiotics discovered using Al Uty
Machine learning spots molecules that work even against ‘untreatable’ strains of s 8
bacteria. / N\f'\\s .
This is a graph neural network
./ (0,%0)
[;} E E [antibiotic]

Article | Published: 09 June 2021
A graph placement methodology for fast chip design ... we pose chip floorplanning as a

Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang, rel nfO rcement Iea rni ng prObIem’
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, and dGVElOp an EdgE'based graph

William Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean COnVOIUtiOnaI neural network

Nature 594, 207-212 (2021) | Cite this article architecture...



Graph convolutions (

Graph convolution: Feature (

O(f) feature vector

3254 .. 13

V3

2716 .. 4.1

09 2.1 ..

3.8

) aggregation from neighbors

o006 o 3254 .. 1.3
[
0 0 2716 .. 41

0 ® 09 2.1 ... 3.8
O O O
AT H

* GNN is an umbrella term for any neural network that performs graph
representation learning.

 CAGNET focuses on Graph Convolutional Networks (GCNs)

 We are working on adding graph attention layers




Full-graph vs. mini-batch SGD

mini-batch

_ Vertices
Vertices

(dtgim, nokta)

Mini-batch SGD:

Full-graph training: * Train on a batch of samples

* Train on entire training set * Faster convergence per epoch

« Slower convergence per epoch * Slower training per epoch

e Faster training per epoch * Requires graph sampling

* Large memory footprint * Potentially smaller memory footprint

* Focus of this presentation * Focus of future work




Full-graph vs. mini-batch SGD

CRENSABHASRSSE AR AN AABG] Jial sample

ERHAEE AR AEIA ¢ FE B EIANE D

:HdealRELNARRDC ASIVUANI2REE

g [Z‘ fi'lﬂlsﬁ.iﬂuﬂﬁﬂﬁﬂﬂﬁ ﬂ!ﬁi’!ﬁﬁﬂ W s
e A 3 ot f

Near 9 ngeyaagnawnmn@u
1S EHEENC £8P CRRIA GAREE &

X

I

PRARELIHOE 25 20O AeCED
ERHABARY.. & ADNEBL S 28 0LACAH

No dependencies

Layered dependencies

Vertices (unlike images) are dependent on each other

L-layer GNN uses L-hop neighbors for vertices in batch

Must store almost the whole graph for any minibatch for power-law graphs
How to subsample from L-hop neighborhood and keep accuracy?

CAGNET (Communication-Avoiding Graph Neural nETworks) full gradient
descent to avoid such issues: https://github.com/PASSIONLab/CAGNET/



https://github.com/PASSIONLab/CAGNET/

Graph convolutions

I
g O

1 g 3

Input Graph GNN of Input Graph

e Recall that a CNN can have different *channel* dimension at each layer.
* GNNs also have different embedding (zomii) dimension at each layer



Embeddings (gomiuiler)

* Mapping objects into vector spaces is an embedding

Figure source: William Hamilton

-

ENC(u)

encode nodes

original network embedding space
Goal:
Gokhan Tur TP ~o T
@tur_gokhan Slmllarlty(U,V) Zu Zv

Turkish word for “embedding” is “gdmme”. Lets
brainstorm for a better word if we can. Any ideas?

Kemal Oflazer @oflazer - May 11, 2020

Gomme actually sounds fine to me or rather | got used to it. Maybe
Gomu? It also means "treasure “ which may be an interesting twist.
Gosterim is too general and any further qualification with it just makes it
less attractive IMO.



GCN training in matrix notation

Forward Propagation: Backward Propagation:
[ Tyyl—1 [ [—1 [ INT I gl—1
7! « ATH"'W G AGH(WHT 0o/ (271
l [ [—1 [—1IN\T [
H « o(Z) Y-l (H-HTAG
Symbols and Notations
Symbol Description
A Modified adjacency matrix of graph (nxn)
H' Embedding matrix in layer [ (n X f)
W Weight matrix in layer | (f X f)
Y! Matrix form of 832% (f X f)
vA Input matrix to activation function (n x f)
G! Matrix form of 682/:;3. (n x f)
o Activation function
f Length of feature vector per vertex
fu Feature vector for vertex u
L Total layers in GNN
P Total number of processes
0" Latency
B Reciprocal bandwidth




Bottleneck of full-graph GCN training

Zl AT Hl—l Wl

Cost(SpMM) >>> Cost(DGEMM)

(mostly because W is so small)



GCN training

« Each node is initialized with a feature vector
— HO° has initial feature vector per node (nx f)
Each node aggregates vectors of its neighbors, applies a weight

« Each layer computes gradients

for i =1 .. E Aenxn
for 1 =1 .. L
71 = AT * H1-1 * |yl l l
HL = o (20) H enxf
for 1 = L-1 ... 1 ’ !
Gl = A * GI*1 * (W+1)T O o’(Z1) G'enxf
dH/dW = (H-1)T * A * Gl
( ) Wlefl—lel

A is sparse and f << n, so the main workhorse is SpMM (sparse
matrix times tall-skinny dense matrix)



The computation cube of matrix-matrix multiplication

Matrix multiplication: V(j) enxn C(j) =2, A>01k)B(k)),

The computation (discrete) cube:
) » A face for each (input/output) matrix
i + Agrid point for each multiplication

[.SD algorithms interpolate between two }

1D algorithms 2D algorithms 3D algorithms




Distributed SpMM algorithms

A is sparse, B and C are dense

ailil
B k — k—
J' — k— [ n i
k n |
= | B | U = |
C A B
e Stationary A, 1.5D algorithm e Stationary C, 2D algorithm
e Aissplit on a p/c-by-c grid  Memory optimal

e 1D algorithm not shown, degeneration of sA-1.5D for the c=1 case
* Right before reduction, sA-1.5D uses c times more dense-matrix memory



Distributed SpMM algorithms

n &/E C;}: = ; AilkBljk
W i
A::3 X //V - >
= X i 4
# P
P g/
//z S
A Z%ﬁ?{ X = g /
2 /i V 4
A::1 ff\?\ X | = ’/ > /

A B cint

lllustration of the 3D algorithm ona./p/c X \/p/c X c process grid



Communication analysis

CAGNET Cost Analyses (per process)
Algorithm Latency Bandwidth Memory
2 nnz(A)+nfL
1D lg P+ 2P onf + f >
P P 2n f 2nfc nnz(A)+nfL nfc
15D 2zle c +7p i &
8n f 2nnz(A) nnz(A)+nfL
2D 5VP+3lgp | 5oLy 2l 5
1/3 2nnz(A) | 12nf nnz(A)+nfL nfc
3D iP P2/3 + P2/3 P P
Symbols and Notations

Symbol Description

A Modified adjacency matrix of graph (nxn)

H! Embedding matrix in layer [ (n X f)

W Weight matrix in layer [ (f x f)

Y! Matrix form of 33‘2@- (f x f)

vA Input matrix to activation function (n X f)

G! Matrix form of 88;1 (n X f)

i

o Activation function

f Length of feature vector per vertex

fu Feature vector for vertex u

L Total layers in GNN

P Total number of processes

o' Latency

I} Reciprocal bandwidth




Communication avoidance (CA) in GNN Training

I reduce [ dbcast B local
2.0 ~ 1.50 g
< ~ 3 I
8 — Il . e
a . & 1i25; ~ T
215- \ g s Y
= " A | " 1.00- % I
Q o~
: | I
£1.0 N s 0.75 1 e
4] = & I
= 0.50-
— 0.5
0.25-
0.0 i 0.00 J
' 16 36 64 1000 36 64 100
amazon protein

= Scales with both P (GPUs — x axis) and c (replication layers in CA algorithms)
= Thisis 1 GPU/node on Summit (all GPUs per node results in paper)
= Expect to scale with all GPUs / node with future architectures (e.g. Perlmutter)

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20




2D vs. 3D performance

B reduce [ sbcast [ dbcast B local
[a) [a)

2.0' 2 "~ i D
N
v}
S
Q LD
U
;g’ 1.0
)]
]
€ 0.5
E

0.0 ; ! 0

25/27 64 121/125 25/27 121/125
amazon proteln

* 64 hidden-layer activations
 Communication scales with P, consistent with analysis
* Computation scales less well 2 explained in paper

Alok Tripathy, Katherine Yelick, Aydin Bulug. Reducing Communication in Graph Neural Network Training. SC’20




Parallel GNN training conclusions

- Graph representation learning is transforming science
» Lots of deep learning problems on graphs
- Can solve DL on graphs with GNNs
» But must distribute training
- Alok’s work
» Can formulate GCN training as SpMM
» Distribute GCN training with distributed SpMM
» Code: https://github.com/PASSIONLab/CAGNET
- Future work
» Distributed sampling for mini-batch training [next slide]
» Beyond graph convolutions [after next slide]



https://github.com/PASSIONLab/CAGNET

PASSION Lab

Bundan sonrasi extra slaytlar

http://passion.lbl.gov

Parallel Algorithms for
Scalable Sparse
computatlONs

NT

EER>, U.S. DEPARTMENT OF :
Our work is funded by i) Office of

ENERGY Science


http://passion.lbl.gov/

Memory requirements of GCN training

f: feature dimension A o)
R

EEEE 1 ‘

,
NN
Zv 2 2

] 3 g 3 g 3

L layers

Memory = ¥i_, nft =~ 0(nLf)

« Forn=1B,L =5, =512, we are looking at 20TB of RAM
« Sampling based mini-batch training would mitigate the issue



The Weisfeiler-Leman Heuristic

Given graph G(V,E)
adj(v) is the set of neighbors of v

Initialize all nodes to the same color
Repeat until colors are “stable”
For all nodes v
s(v) = {colors(adj(v)), color(v)}
color(v) = hash(s(v))

*The actual colors are irrelevant



The Weisfeiler-Leman Heuristic

‘\asL\(C, Z.,.S) kask( ,z , S)

kask(., ZO,Q,OS} 'h“st‘( :Z > S)
hash (0, 20, #5) .I_l.l.

Figure source: Michael Bronstein



What graph convolution can not learn

« To match the power of the WL heuristic (or more precisely
WL-1), we need our GNN aggregation function to be a
multiset injection

SURJECTION INJECTION ‘ BIJECTION

X— Y X—" Y
o >0

==\ (O
4 X ) e




What graph convolution can not learn

“max” aggregator Neither “max” nor "mean”

can not distinguish can distinguish these two
these two graphs graphs



Self-attention

<«
N

The weight w; is not a parameter, as in a normal neural net, but it
is derived from a function over x; and x;. Example: dot product



Graph attention: making edge weights learnable

h, CTC I O h,

Woy W3 Wy W

Sparse

same structure
with A

W

O

w,= [Tl ® ﬁ hy
h,

SDDMM: Sampled dense-dense
matrix multiplication

GrB_mxm(W, A, H, H, ... );




