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Machine learning and systems biology

Goals

Machine learning tries to detect statistical dependencies in large datasets.

Systems biology studies the interplay of components of a biological system and the
functions/properties it gives rise to.
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Machine learning and systems biology

Motivation

Enormous success of machine learning in tasks such as classifying images,
recognizing speech, translating text, and playing games

Can this success be translated to systems biology, and the life sciences in general?
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Machine learning and systems biology

Holy grails of computational biology

Structural biology: predicting protein structure from protein sequence
Genetics: predicting complex traits of individuals based on their genotypes
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Machine learning and systems biology

Further central topics

Chemoinformatics: predicting function based on molecular structure

Medicine: predicting disease diagnosis, progression, therapy outcome
Genomics: predicting e.g. the exact position of a gene within the genome

Common problem: insufficient prediction accuracy
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Machine learning and systems biology

Obstacles for machine learning in the life sciences

1 Not enough observations

2 Uncertainty and difficulty in phenotyping
3 Unclear which complexity of machine learning models is required

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 6 / 44



Machine learning and systems biology

Obstacles for machine learning in the life sciences

1 Not enough observations
2 Uncertainty and difficulty in phenotyping

3 Unclear which complexity of machine learning models is required

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 6 / 44



Machine learning and systems biology

Obstacles for machine learning in the life sciences

1 Not enough observations
2 Uncertainty and difficulty in phenotyping
3 Unclear which complexity of machine learning models is required

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 6 / 44



Machine learning and systems biology

Recently big progress

Protein structure prediction Molecular function prediction

Both use machine learning on graphs
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Machine learning on graphs
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Machine learning and systems biology

Machine learning on graphs

Graphs are the data structure to represent
systems, networks and structures.

Graph comparison in practice
computationally expensive (Borgwardt et al.,

2005)

Fast graph kernels based on the
Weisfeiler-Lehman scheme (Shervashidze and

Borgwardt, 2009; Shervashidze et al., 2011)

Fundamental concept in graph kernels and
graph convolutional networks (Borgwardt et al.,

Foundations and Trends in Machine Learning 2020)
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Machine learning on graphs

Fundamental question: How similar are two graphs?
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Machine learning on graphs

1. Similarity measures on graphs: Counting matching subgraphs

Basis of many past and current graph representations, e.g.:
random walk kernels (Kashima et al., 2003 and Gärtner et al., 2003)

shortest paths kernels (Borgwardt and Kriegel, 2005)

graphlets (Przulj, 2007)
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Machine learning on graphs

2. Similarity measures on graphs: Neighborhood aggregation
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Basis of Weisfeiler-Lehman graph kernels and (Spatial) Graph Convolutional
Networks (e.g., Shervashidze et al., 2009, 2011, Kipf et al., 2016)
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Machine learning on graphs

New graph representation approach: Filtration curves (O’Bray∗, Rieck∗, B., KDD 2021)
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Machine learning on graphs

Filtration curve representation

Two components:

1. A graph filtration FG

(native) edge weight
max-degree
Ricci curvature
Heat kernel signature

2. A graph descriptor function f

Node label histogram
Count of connected components
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Machine learning on graphs

Filtration curve representation

Two components:

1. A graph filtration FG

(native) edge weight
max-degree
Ricci curvature
heat kernel signature

2. A graph descriptor function f

node label histogram
count of connected components

Runtime: O(m logm) for sorting all m
edges
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Machine learning on graphs

Filtration-based graph representation

Given
a graph filtration FG = (G1, . . . ,Gm).
and a graph descriptor function f : G → Rd

Then we can represent G as a high-dimensional path via

PG :=
m⊕

i=1

f (Gi) ∈ Rm×d , (1)

where
m indexes the number of edge weight thresholds in FG, and
⊕ refers to the concatenation operator.
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Machine learning on graphs

Empirical comparison

Setup: subgraph enumeration (blue) and neighborhood-aggregation (yellow)
approaches versus Filtration Curves (pink) on graph classification benchmarks
Datasets: collection of 8 labeled and 5 unlabeled datasets for graph classification
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Machine learning on graphs

Filtration curves

Efficient to compute and expressive graph representation
Code: https://github.com/BorgwardtLab/filtration_curves
General graph kernel code (Sugiyama et al., Bioinformatics 2018)

Impact of learning on graphs

Growing number of successful applications in systems and network biology (Muzio∗,

O’Bray∗ et al., Briefings in Bioinformatics 2021)

Numerous further topics beyond graph comparison: e.g., graph generation and its
evaluation (O’Bray et al., arXiv 2021 https://arxiv.org/abs/2106.01098)

Inherently related to learning on sequences, time series and images - which also
have manifold (potential) applications in the life sciences
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Machine learning and systems biology

Example of success

Synthetic biology: ribosome binding site (RBS) activity prediction

Examples of ongoing work

Medicine: Sepsis prediction
Plant breeding: Wheat yield prediction
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Machine learning in synthetic biology
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Ribosome binding site activity prediction

DNA-based phenotypic recording (Höllerer∗,

Papaxanthos∗, et al., Nature Comm 2020)

uASPIre: new approach for
sequencing-based phenotype recording for
studying RBS activity in bacteria.
Generates datasets of 100,000s of RBSs
with activity phenotype
Machine learning task: Can we use this data
to make accurate predictions for any possible
given RBS sequence?
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Ribosome binding site activity prediction

Methodological approach

We developed a neural network to predict RBS activity from sequence:
SAPIENs: Sequence-Activity Prediction In Ensemble of Networks
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Ribosome binding site activity prediction

Deep learning (SAPIENs) enables highly accurate sequence-function mapping
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Ribosome binding site activity prediction

Current and future challenges

Interpretation of SAPIENs predictions
Design of RBS sequences using SAPIENs
Integration of cellular context into SAPIENs
Generalization to other gene regulatory
elements
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Machine learning in medicine
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What is Sepsis?
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Predicting Sepsis

Sepsis-3 definition (Singer et al., 2016)

Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host
response to infection.

Relevance of early recognition

Bacterial species identification in blood still takes 24h-48h (Osthoff et al., 2017).
Each hour of delayed effective antibiotic treatment increases mortality (Ferrer et al., 2014).

→ Detecting and treating sepsis earlier is of highest clinical interest.
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Hectic fever, at its inception, is difficult to recognize but easy to
treat; left unattended, it becomes easy to recognize and difficult

to treat.
(Niccolò Machiavelli, Il Principe)
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Predicting clinical outcomes in intensive care units

Input: patients’ ICU data

temperature
heart rate
blood pressure

respiratory rate
O2 saturation

Output: sepsis prediction

onset
septic shock
mortality
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Predicting sepsis through time series classification

What is the state of the art in sepsis detection using ML?

Ref Dataset Label Method 3h AU-ROC /-PR Prev (%)
Futoma et al., 2017 Duke Sepsis-2 ’related’ MGP-RNN 0.96 / 0.87 21.4
Calvert et al., 2016 MIMIC-2 ICD-9 + 5h SIRS InSight 0.92 11.4
Kam et al., 2017 MIMIC-2 ICD-9 + 5h SIRS LSTM 0.93 6.6
Desautels et al., 2016 MIMIC-3 Sepsis-3 InSight eval 0.76 / 0.29 11.3

Shimabukuro et al.. BMJ Open Resp Res 2017;4:e000234.
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Predicting sepsis through time series classification

What is the state of the art in sepsis detection using ML?

Johnson et al. (2018) showed that various sepsis definitions lead to different cohorts
Low comparability due to heterogeneous phenotype definitions and
implementations:

Several authors use ICD-9 billing code as sepsis label, without exact time of sepsis onset
(e.g. Calvert et al., 2016, Kam et al., 2017)

Even for Sepsis-3 on MIMIC-III, the number of sepsis cases differs between studies:
5,784 (Johnson et al., 2018),
1,840 (Desautels et al., 2016),
17,898 (Raghu et al. 2017)
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Predicting sepsis through time series classification

Sepsis-3 definition

Case
SI: suspicion of infection
SOFA: Sepsis-related organ failure assessment score

ICU Admission ICU Discharge

4h
Baseline
Window

SI−5d SI−2d

Suspected Infection
Window

SI+1dSI

SOFA (Vincent et al., 1996) +2

Control
Only SI, or only SOFA score increase, or neither of them
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Predicting sepsis through time series classification

Challenges

Comparability
Heterogeneous label definitions (some insufficient for early detection task)
Heterogeneous label extraction (even on the same data with identical definition )

Reproducibility
Unavailability of code for label extraction

Circularity
Same observations used for prediction and definition of sepsis

Evaluation
Time horizon analysis: which point in time to use for controls?
Few studies report precision / recall despite considerable class imbalance

Systematic review: Moor∗, Rieck∗ et al., Frontiers in Medicine 2021
https://doi.org/10.3389/fmed.2021.607952
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Early onset prediction based on Sepsis-3 definition

Moor et al., MLHC 2019

1 Determine temporally resolved Sepsis-3 labels on MIMIC-III
2 Imputation and regularization of measurements with Multi-Task Gaussian Processes
3 Classification with a Temporal Convolutional Network (MGP-TCN).
4 Classification with a Data Mining approach: Dynamic Time Warping k-nearest

Neighbor (DTW-KNN) ensemble.
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MIMIC-III dataset (after filtering)

Variable Sepsis Cases Controls

n 570 5,618
Female 236 (41.4%) 2,548 (45.4%)
Male 334 (58.6%) 3,070 (54.6%)

Mean time to sepsis onset in ICU (median) 16.7 h (11.8 h) —
Age (µ± σ) 67.2 ± 15.3 64.2 ± 17.3
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Results
Early onset prediction on MIMIC-III (Moor et al., MLHC 2019)
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Summary

Lessons we have learned

Inherent challenges regarding comparability, reproducibility, circularity and proper
evaluation
Imputation scheme matters→ methods for working on irregularly sampled time
series are promising (Horn et al., ICML 2020)

Deep learning architecture matters
Classic baseline is the best early predictor→ never miss to have a classic baseline
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Current work: Personalized Swiss Sepsis Study

Goal

Predict whether a patient will
develop sepsis during ICU stay

Phase I: using clinical routine data
Phase II: using omics profiles

Current state

Phase I: 10.000 health records
collected across Switzerland
Phase II: started recently

Duration:
4 years
(2018-2022)

Total funding:
5.3 Million CHF

Moor et al., 2019, Moor et al., 2021
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Current work: Wheat yield prediction

Goal

Select wheat lines that
provide high yield across
environments

Current state

Deep learning can
drastically improve yield
prediction when combining
genotype and drone images
(Pearson’s correlation 0.373 vs 0.026 linear model)
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Machine learning in systems biology

Outlook

1 Biomarker discovery: predicting the phenotype of a system
2 Data integration: combining local and (massive) public datasets, different data

types, accounting for confounding
3 Machine learning on structured data will be key to solving these problems

Future challenge: enormous data growth

Sample size: reaching new magnitudes, from cell biology to medicine
Time: more and longer longitudinal data
Depth: multi-omics, or from lower- to higher-phenotypic level
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Thank you

Collaborators: Jeschek and Benenson labs at D-BSSE, PSSS consortium
Sponsors: ERC-backup Scheme of Swiss National Science Foundation,
Krupp-Stiftung, European Union (MSCA), SPHN/PHRT, SNSF, Botnar Foundation

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 41 / 44



References I

J. Futoma, et al., arXiv preprint arXiv:1706.04152 (2017).

J. S. Calvert, et al., Computers in Biology and Medicine 74, 69 (2016).

H. J. Kam, H. Y. Kim, Computers in biology and medicine 89, 248 (2017).

T. Desautels, et al., JMIR Medical Informatics 4, e28 (2016).

A. E. Johnson, et al., Critical care medicine 46, 494 (2018).

A. Raghu, et al., arXiv preprint arXiv:1711.09602 (2017).

K. Borgwardt, et al., Bioinformatics 21, i47 (2005).

K. M. Borgwardt, H.-P. Kriegel, Proceedings of the 5th IEEE International Conference on Data Mining (ICDM
2005), 27-30 November 2005, Houston, Texas, USA (IEEE Computer Society, 2005), pp. 74–81.

K. Borgwardt, et al., Foundations and Trends® in Machine Learning 13, 531 (2020).

E. Callaway, Nature News 588, 203 (2020).

R. Ferrer, et al., Critical Care Medicine 42, 1749 (2014).

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 42 / 44



References II

S. Höllerer, et al., Nature Communications 11, 3551 (2020).

M. Horn, et al., International Conference on Machine Learning (PMLR, 2020), pp. 4353–4363.

S. L. Hyland, et al., Nature Medicine 26, 364 (2020).

T. N. Kipf, M. Welling, arXiv preprint arXiv:1609.02907 (2016).

T. A. Manolio, et al., Nature 461, 747 (2009).

M. Moor, et al., Machine Learning for Healthcare Conference (2019), pp. 2–26.

M. Moor, et al., Frontiers in Medicine 8 (2021).

L. O’Bray, et al., arXiv:2106.01098 [cs, stat] (2021).

M. Osthoff, et al., Clinical Microbiology and Infection: The Official Publication of the European Society of
Clinical Microbiology and Infectious Diseases 23, 78 (2017).

N. Pržulj, et al., Bioinformatics 22, 974 (2006).

C. W. Seymour, et al., JAMA 315, 762 (2016).

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 43 / 44



References III

N. Shervashidze, K. M. Borgwardt, Advances in Neural Information Processing Systems 22:, Y. Bengio, et al.,
eds. (Curran Associates, Inc., Vancouver, British Columbia, Canada, 2009), pp. 1660–1668.

N. Shervashidze, et al., Journal of Machine Learning Research 12, 2539 (2011).

M. Singer, et al., JAMA 315, 801 (2016).

J. M. Stokes, et al., Cell 180, 688 (2020).

M. Sugiyama, et al., Bioinformatics 34, 530 (2018).

J.-L. Vincent, et al., Intensive Care Medicine 22, 707 (1996).

ETH Zürich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy June 23, 2021 44 / 44


