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m Systems biology studies the interplay of components of a biological system and the
functions/properties it gives rise to.
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Motivation
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Machine learning and systems biology

Motivation

m Enormous success of machine learning in tasks such as classifying images,
recognizing speech, translating text, and playing games
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m Can this success be translated to systems biology, and the life sciences in general?
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Machine learning and systems biology

Holy grails of computational biology

m Structural biology: predicting protein structure from protein sequence
m Genetics: predicting complex traits of individuals based on their genotypes

Vol 4618 October 2009/doi10.1038/nature08454 nature

REVIEWS

Finding the missing heritability of complex
diseases

Teri A. Manolio!, Francis S. Collins?, Nancy J. Cox’, David B. Goldstein®, Lucia A. Hindorff’, David J. Hunter",
Mark I. McCarthy’, Erin M. Ramos®, Lon R. Cardon®, Aravinda Chakravarti’, Judy H. Cho'’, Alan E. Guttmacher',
Augustine Kong', Leonid Kruglyak™, Elaine Mardis™*, Charles N. Rotimi'*, Montgomery Slatkin'*, David Valle’,
Alice S. Whittemore', Michael Boehnke'”, Andrew G. Clark', Evan . Eichler'®, Greg Gibson®, Jonathan L. Haines",
Trudy F. C. Mackay®, Steven A. McCarroll® & Peter M. Visscher™*

traits, and have provided valuable insights into their genetic architecture. Most variants identified so far confer relatively
small increments in risk, and explain only a small proportion of familial clustering, leading many to question how the
remaining, ‘missing’ heritability can be explained. Here we examine potential sources of missing heritability and propose

of complex diseases and enhance its potential to enable effective disease prevention or treatment.
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Further central topics

m Chemoinformatics: predicting function based on molecular structure
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Machine learning and systems biology

Further central topics

m Chemoinformatics: predicting function based on molecular structure
m Medicine: predicting disease diagnosis, progression, therapy outcome
m Genomics: predicting e.g. the exact position of a gene within the genome

Common problem: insufficient prediction accuracy
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Machine learning and systems biology

Obstacles for machine learning in the life sciences

Not enough observations
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Machine learning and systems biology

Obstacles for machine learning in the life sciences

Not enough observations
Uncertainty and difficulty in phenotyping
Unclear which complexity of machine learning models is required

ETH Ziirich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy | June 23,2021 | 6 /44



Machine learning and systems biology

Recently big progress
m Protein structure prediction m Molecular function prediction
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P! ~ i v v Subscribe a cell

213, FEBRUARY.

hature > news > article
ARTICLE | VOLUME 180, 55U

A Deep Learning Approach to Antibiotic Discovery

NEWS - 30 NOVEMBER 2020

‘It will change everything’: DeepMind’s Al

mmi S. Jaakkola * Regina Barzilay 2 =

makes gigantic leap in SOIVing protei“ Jonathan M. Stokes * Kevin Yang Kyle Swanson '
structures James J. Colins 2 11 1+ Snow
DO htps1/dol.org/10.1016/;0ll 2020.01.021

the 3D shapes of proteins

le's d iing program for
stands to transform biology, say scientists.

Turkish Science Academy | June 23,2021 | 7/ 44

ETH Zurich Karsten Borgwardt (@kmborgwardt)



ETH Zurich

Machine learning and systems biology

Recently big progress

m Protein structure prediction m Molecular function prediction

nature View all Nature Resea Science that nspires
P! ~ i v v Subscribe a cell

AgTICLE |

A Deep Learning Approach to Antibiotic Discovery

NEWS - 30 NOVEMBER 2020

‘It will change everything’: DeepMind’s Al

‘Tommi S. Jaakkola * Regina Barzilay 2 (=

makes giganticleap in solving protein Jonthan M, Stokes +Kevin Yang 1 +ite Swanson *
James J. Collins g

structures
e DOI: hitpsi/doLorg/10.1016/.cell 2020.01.021 - [N

the 3D shapes of proteins

iing program for
stands to transform biology, say scientists.

Both use machine learning on graphs

Turkish Science Academy | June 23,2021 | 7/ 44

Karsten Borgwardt (@kmborgwardt)



Machine learning on graphs
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Machine learning on graphs

m Graphs are the data structure to represent
systems, networks and structures.

ETH Zurich

Machine learning and systems biology

Karsten Borgwardt (@kmborgwardt)
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Machine learning on graphs

m Graphs are the data structure to represent
systems, networks and structures.
m Graph comparison in practice

computationally expensive (Borgwardt et al.,
2005)
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Machine learning and systems biology

Machine learning on graphs

m Graphs are the data structure to represent

systems, networks and structures.
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Machine learning and systems biology

Machine learning on graphs

m Graphs are the data structure to represent
systems, networks and structures.

m Graph comparison in practice
computationally expensive (Borgwardt et al.,
2005)

m Fast graph kernels based on the
Weisfeiler-Lehman scheme (Shervashidze and
Borgwardt, 2009; Shervashidze et al., 2011)

m Fundamental concept in graph kernels and
graph convolutional networks (Borgwardt et al.,
Foundations and Trends in Machine Learning 2020)
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Machine learning on graphs

Fundamental question: How similar are two graphs?
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Machine learning on graphs

1. Similarity measures on graphs: Counting matching subgraphs

m Basis of many past and current graph representations, e.g.:

m random walk kernels (kashima et al., 2003 and Gartner et al., 2003)
m shortest paths kernels (gorgwardt and Kriegel, 2005)
m graphlets (przui, 2007)
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Machine learning on graphs

2. Similarity measures on graphs: Neighborhood aggregation

Given labeled graphs G, and G 1+ Iteration
B 2 Result of Steps 1 and 2: Multiset-label determination and sorting
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Result of Step 3: Label compression Result of Step 4: Relabeling
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m Basis of Weisfeiler-Lehman graph kernels and (Spatial) Graph Convolutional
Networks (e.g., Shervashidze et al., 2009, 2011, Kipf et al., 2016)
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Machine learning on graphs

New graph representation approach: Filtration curves osray-, rieck, 8. kop 2021)

Filtration Sequence
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Filtration Curves
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Machine learning on graphs

Filtration curve representation

Two components:

1. A graph filtration Fg

m (native) edge weight
B max-degree

m Ricci curvature

m Heat kernel signature
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1. A graph filtration Fg 2. A graph descriptor function f
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® max-degree m Count of connected components
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Machine learning on graphs

Filtration curve representation

Two components:

1. A graph filtration Fg 2. A graph descriptor function f
m (native) edge weight m node label histogram
® max-degree m count of connected components

m Ricci curvature

m heat kernel signature Runtime: O(mlog m) for sorting all m

edges
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Machine learning on graphs

Filtration-based graph representation

m Given
m a graph filtration Fg = (Gy, ..., Gn).
m and a graph descriptor function f : G — R9

Then we can represent G as a high-dimensional path via
m
P =P HG)eR™C, (1)
i=1

m where

m mindexes the number of edge weight thresholds in Fg, and
m & refers to the concatenation operator.
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Machine learning on graphs

Empirical comparison

m Setup: subgraph enumeration (blue) and neighborhood-aggregation (yellow)
approaches versus Filtration Curves (pink) on graph classification benchmarks

m Datasets: collection of 8 labeled and 5 unlabeled datasets for graph classification
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Machine learning on graphs

Filtration curves

m Efficient to compute and expressive graph representation

m Code: https://github.com/BorgwardtLab/filtration_curves
m General graph kernel code (Sugiyama et al., Bioinformatics 2018)

ETH Ziirich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy | June 23,2021 | 18/ 44


https://github.com/BorgwardtLab/filtration_curves
https://arxiv.org/abs/2106.01098

Machine learning on graphs

Filtration curves

m Efficient to compute and expressive graph representation

m Code: https://github.com/BorgwardtLab/filtration_curves
m General graph kernel code (Sugiyama et al., Bioinformatics 2018)

Impact of learning on graphs

m Growing number of successful applications in systems and network biology muzio*,

O'Bray™ et al., Briefings in Bioinformatics 2021)
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Filtration curves

m Efficient to compute and expressive graph representation

m Code: https://github.com/BorgwardtLab/filtration_curves
m General graph kernel code (Sugiyama et al., Bioinformatics 2018)

Impact of learning on graphs

m Growing number of successful applications in systems and network biology muzio*,

O'Bray™ et al., Briefings in Bioinformatics 2021)

m Numerous further topics beyond graph comparison: e.g., graph generation and its

evaluation (O'Bray et al., arXiv 2021 https://arxiv.org/abs/2106.01098)
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Machine learning on graphs

Filtration curves

m Efficient to compute and expressive graph representation

m Code: https://github.com/BorgwardtLab/filtration_curves
m General graph kernel code (Sugiyama et al., Bioinformatics 2018)

Impact of learning on graphs

m Growing number of successful applications in systems and network biology muzio*,
O'Bray™ et al., Briefings in Bioinformatics 2021)

m Numerous further topics beyond graph comparison: e.g., graph generation and its
evaluation (O'Bray et al., arXiv 2021 https://arxiv.org/abs/2106.01098)

m Inherently related to learning on sequences, time series and images - which also
have manifold (potential) applications in the life sciences
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Machine learning and systems biology

Example of success

m Synthetic biology: ribosome binding site (RBS) activity prediction
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Machine learning and systems biology

Example of success

m Synthetic biology: ribosome binding site (RBS) activity prediction

Examples of ongoing work

m Medicine: Sepsis prediction
m Plant breeding: Wheat yield prediction
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Machine learning in synthetic biology
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Ribosome binding site activity prediction

DNA-based phenotypic recording (Hsllerer*,

Papaxanthos*, et al., Nature Comm 2020)

m uASPIre: new approach for
sequencing-based phenotype recording for
studying RBS activity in bacteria.

m Generates datasets of 100,000s of RBSs
with activity phenotype

m Machine learning task: Can we use this data
to make accurate predictions for any possible
given RBS sequence?

ETH Zurich Karsten Borgwardt (@kmborgwardt)

a modifier diversifier discriminator
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Ribosome binding site activity prediction

Methodological approach

m We developed a neural network to predict RBS activity from sequence:

ETH Zurich

a one-hot encoding residual blocks (3x)

conv2
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Karsten Borgwardt (@kmborgwardt)
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SAPIENs: Sequence-Activity Prediction In Ensemble of Networks
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Ribosome binding site activity prediction

m Deep learning (SAPIENS) enables highly accurate sequence-function mapping
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Ribosome binding site activity prediction

Current and future challenges
g h

AACAUUCUUCAACUGAGHy: 0-0007
G 02079

0.9987

0.0262

m Interpretation of SAPIENSs predictions
m Design of RBS sequences using SAPIENs
m Integration of cellular context into SAPIENs A

m Generalization to other gene regulatory U e s
elements
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Machine learning in medicine
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What is Sepsis?

WoRLD Sepsis DAY INFOGRAPHICS
A GrosaL HeaLtH CRrisis

& .28 27 000 000 - 30 000 000 people |
S % per year develop sepsis
v ~

&

7 000 000 - 9 000 000 die
- 1 death every 3.5 seconds

Survivors may face
lifelong consequences

Global = is-
e www.world-sepsis-day.org

Aliance  Www.global-sepsis-alliance.org
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Predicting Sepsis

Sepsis-3 definition (singereta, 2016)

m Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host
response to infection.

Relevance of early recognition

m Bacterial species identification in blood still takes 24h-48h (ostnoft et at., 2017).
m Each hour of delayed effective antibiotic treatment increases mortality (erreretar, 2014).
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Predicting Sepsis

Sepsis-3 definition (singereta, 2016)
m Sepsis is a life-threatening organ dysfunction, caused by a dysregulated host
response to infection.
Relevance of early recognition

m Bacterial species identification in blood still takes 24h-48h (ostnoft et at., 2017).
m Each hour of delayed effective antibiotic treatment increases mortality (erreretar, 2014).

— Detecting and treating sepsis earlier is of highest clinical interest.
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Hectic fever, at its inception, is difficult to recognize but easy to
treat; left unattended, it becomes easy to recognize and difficult
to treat.

(Niccold Machiavelli, Il Principe)
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Predicting clinical outcomes in intensive care units

Input: patients’ ICU data

m temperature

m respiratory rate

m heart rate .
m O, saturation

m blood pressure

Output: sepsis prediction

m onset
m septic shock
m mortality
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Predicting sepsis through time series classification

What is the state of the art in sepsis detection using ML?

Ref Dataset | Label Method 3h AU-ROC /-PR | Prev (%)
Futoma et al., 2017 Duke Sepsis-2 related’ | MGP-RNN | 0.96/0.87 21.4
Calvert et al., 2016 MIMIC-2 | ICD-9 + 5h SIRS | InSight 0.92 11.4
Kam et al., 2017 MIMIC-2 | ICD-9 + 5h SIRS | LSTM 0.93 6.6
Desautels et al., 2016 | MIMIC-3 | Sepsis-3 InSight eval | 0.76 / 0.29 11.3
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What is the state of the art in sepsis detection using ML?

Ref Dataset | Label Method 3h AU-ROC /-PR | Prev (%)
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Kam et al., 2017 MIMIC-2 | ICD-9 + 5h SIRS | LSTM 0.93 6.6
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B

LS severe sepsis prediction algorithm on

SV Effect of a machine learning-based
R
Research

ETH Zurich Karsten Borgwardt (@kmborgwardt)

patient survival and hospital length of
stay: a randomised clinical trial

David W Shimabukuro," Christopher W Barton, Mitchell D Feldman,®
Samson J Mataraso,** Ritankar Das®

Shimabukuro et al.. BMJ Open Resp Res 2017;4:000234.
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Predicting sepsis through time series classification

What is the state of the art in sepsis detection using ML?

m Johnson et al. (2018) showed that various sepsis definitions lead to different cohorts

m Low comparability due to heterogeneous phenotype definitions and
implementations:
m Several authors use ICD-9 billing code as sepsis label, without exact time of sepsis onset
(e.g. Calvert et al., 2016, Kam et al., 2017)
m Even for Sepsis-3 on MIMIC-III, the number of sepsis cases differs between studies:
B 5,784 (yohnson et al., 2018),
B 1,840 (Desautels et al., 2016),
B 17,898 (Raghu et al. 2017)
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Predicting sepsis through time series classification

Sepsis-3 definition

m Case

m Sl: suspicion of infection
m SOFA: Sepsis-related organ failure assessment score

SOFA (Vincent et al., 1996) +2

Baseline Suspected Infection

4h Window Window
*— ! ! C—t @
ICU Admission Sl-5d Sl—-2d Sl Sl+1d ICU Discharge
= Control

m Only SI, or only SOFA score increase, or neither of them
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Predicting sepsis through time series classification

Challenges

m Comparability

m Heterogeneous label definitions (some insufficient for early detection task)
m Heterogeneous label extraction (even on the same data with identical definition )

m Reproducibility
m Unavailability of code for label extraction
m Circularity
m Same observations used for prediction and definition of sepsis
m Evaluation
m Time horizon analysis: which point in time to use for controls?
m Few studies report precision / recall despite considerable class imbalance
Systematic review: Moor*, Rieck* et al., Frontiers in Medicine 2021

https://doi.org/10.3389/fmed.2021.607952
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Early onset prediction based on Sepsis-3 definition

Moor et al., MLHC 2019

Determine temporally resolved Sepsis-3 labels on MIMIC-III
Imputation and regularization of measurements with Multi-Task Gaussian Processes
Classification with a Temporal Convolutional Network (MGP-TCN).

Classification with a Data Mining approach: Dynamic Time Warping k-nearest
Neighbor (DTW-KNN) ensemble.
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MIMIC-Illl dataset (after filtering)

Variable Sepsis Cases Controls

n 570 5,618
Female 236 (41.4%) 2,548 (45.4%)
Male 334 (58.6%) 3,070 (54.6%)

Mean time to sepsis onset in ICU (median) 16.7h (11.8h) —

Age (1 =+ o) 67.2 +15.3 64.2 +17.3
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Results

Early onset prediction on MIMIC-III (Moor et al., MLHC 2019)

Prediction Horizon of Sepsis Early Detection
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Summary

Lessons we have learned
m Inherent challenges regarding comparability, reproducibility, circularity and proper
evaluation

m Imputation scheme matters — methods for working on irregularly sampled time
series are promising (Horn etal., IcML 2020)

m Deep learning architecture matters
m Classic baseline is the best early predictor — never miss to have a classic baseline

ETH Zlirich Karsten Borgwardt (@kmborgwardt) Turkish Science Academy | June 23,2021 | 37/ 44



Current work: Personalized Swiss Sepsis Study

G Oal Adrian Egli Karsten Borgwardt
<= A8 PI SPHN PI PHRT
5 & ciinical Microbiology, University Hospital Basel MLCB, D-BSSE, ETH Zirich

m Predict whether a patient will EmHirih
develop sepsis during ICU stay
m Phase I: using clinical routine data
m Phase Il: using omics profiles

Current state

m Phase I: 10.000 health records
collected across Switzerland
m Phase |l: started recently
Moor et al., 2019, Moor et al., 2021
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Current work: Wheat yield prediction

a  Data collection and processing

Goal

UAV phenotyping & M "rspeclral eges
[mageprocessing D;g i Elovaion Models

Genotyping -0012021001. Genotype

m Select wheat lines that
provide high yield across
environments

Yield measurement —— 7.3 tonshectare. Plot-level grain yield

Multispectral
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Current state

m Deep learning can
drastically improve yield
prediction when combining
genotype and drone images

(Pearson’s correlation 0.373 vs 0.026 linear model)
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Attention
mechanism

Togninalli et al., under preparation 2021
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Machine learning in systems biology

Outlook

Biomarker discovery: predicting the phenotype of a system

Data integration: combining local and (massive) public datasets, different data
types, accounting for confounding

Machine learning on structured data will be key to solving these problems

Future challenge: enormous data growth

m Sample size: reaching new magnitudes, from cell biology to medicine
m Time: more and longer longitudinal data
m Depth: multi-omics, or from lower- to higher-phenotypic level
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Thank you

m Collaborators: Jeschek and Benenson labs at D-BSSE, PSSS consortium

m Sponsors: ERC-backup Scheme of Swiss National Science Foundation,
Krupp-Stiftung, European Union (MSCA), SPHN/PHRT, SNSF, Botnar Foundation
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