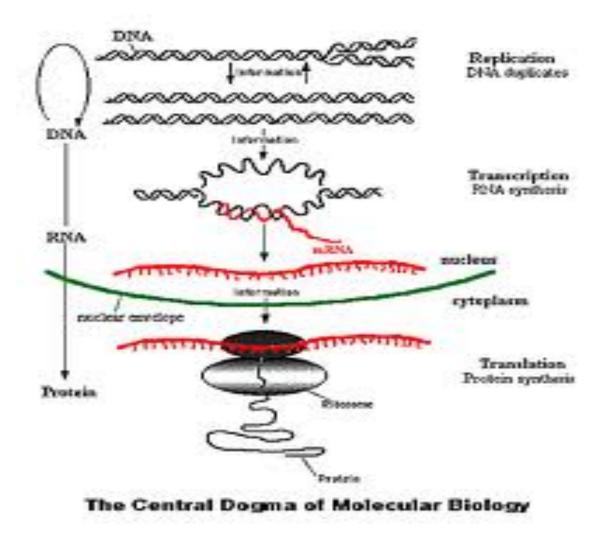
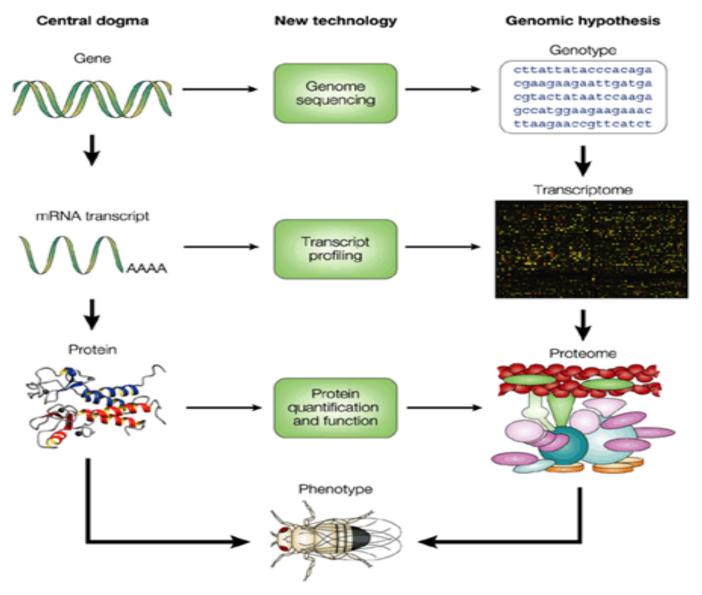
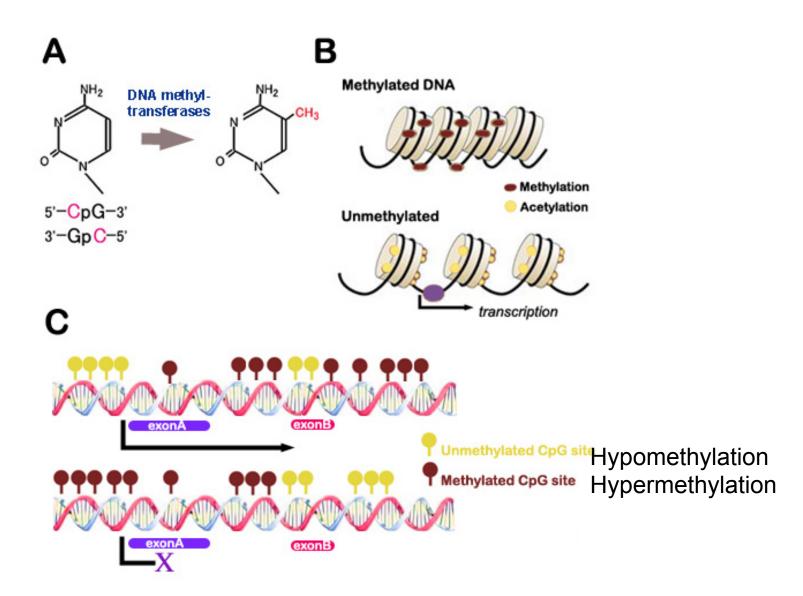
Al applications for analysis ofmulti 'Omics' data for identification of personalized driver pathways and Cancer therapy candidates Uğur Sezerman Acıbadem Üniversitesi

Goals:

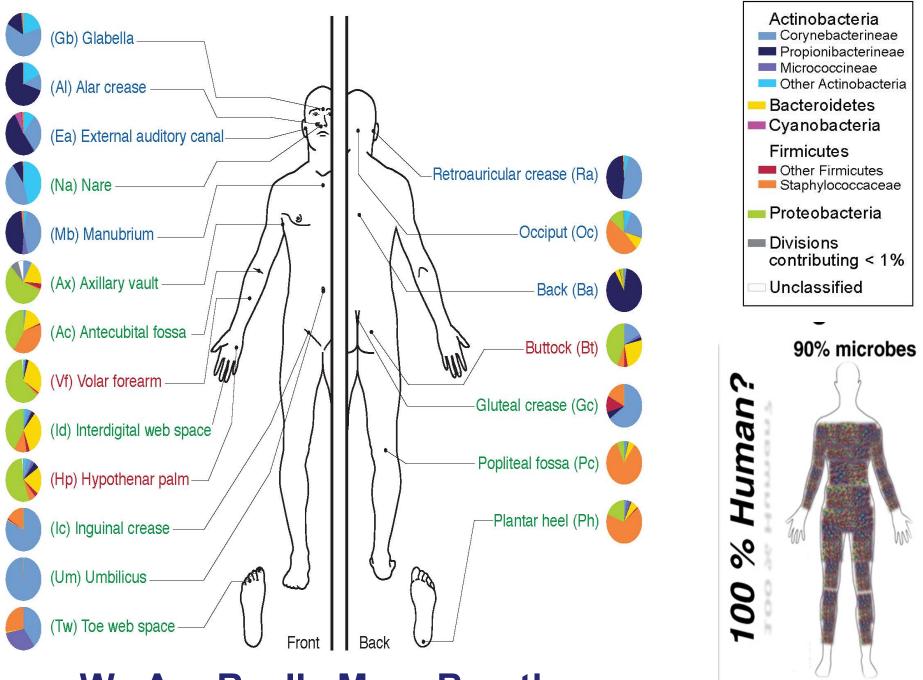

- identify all the approximate 30,000 genes in human DNA,
- determine the sequences of the 3 billion chemical base pairs that make up human DNA,
- store this information in databases,
- improve tools for data analysis,
- transfer related technologies to the private sector, and
- address the ethical, legal, and social issues (ELSI) that may arise from the project.


Milestones:

- 1990: Project initiated as joint effort of U.S. Department of Energy and the National Institutes of Health
- June 2000: Completion of a working draft of the entire human genome (covers >90% of the genome to a depth of 3-4x redundant sequence)
- February 2001: Analyses of the working draft are published
- April 2003: HGP sequencing is completed and Project is declared finished two years ahead of schedule


http://doegenomes.org

http://www.sanger.ac.uk/HGP/overview.shtmJ.S. Department of Energy Genome Programs, Genomics and Its Impact on Science and Society, 2003



Nature Reviews | Genetics

http://www.cellscience.com/reviews7/Taylor1.jpg

We Are Really More Bug than

10% human cells

GUT MICROBIOTA


10¹³ -10¹⁴ microbes
1000- 35000 of species (most of them are still to be identified)
Weight – 3 to 5 lbs
Genome – 150 fold of our Genome

Bacteroides, Prevotella, Fusobacterium, Eubacterium, Ruminococcus, Peptococc

US,

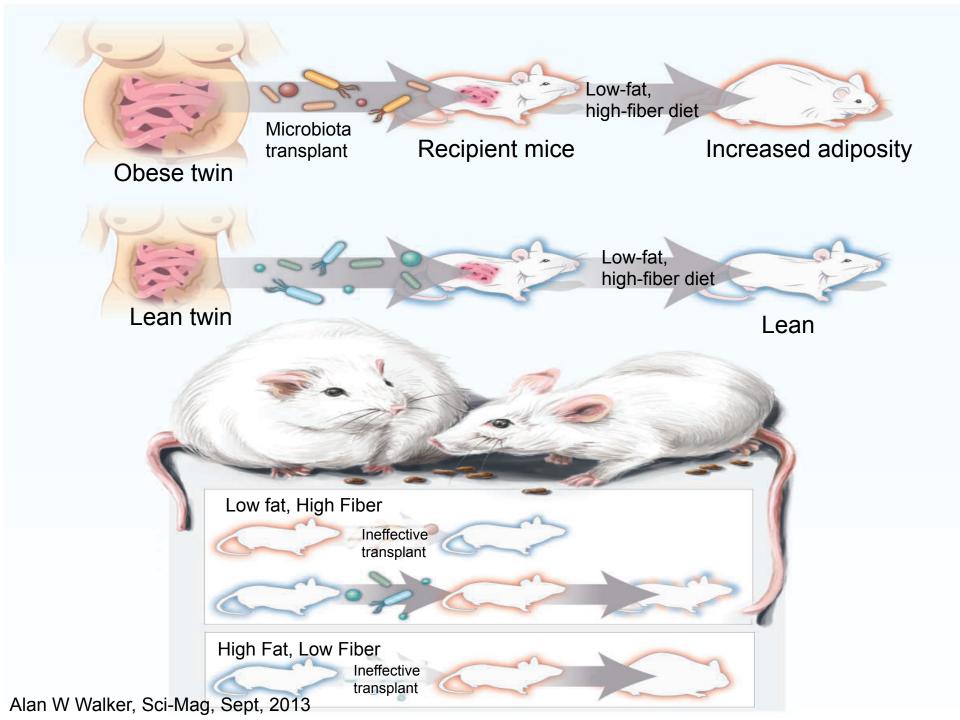
Peptostreptococcus, Bifidobacterium. Escherichia and Lactobacillus.

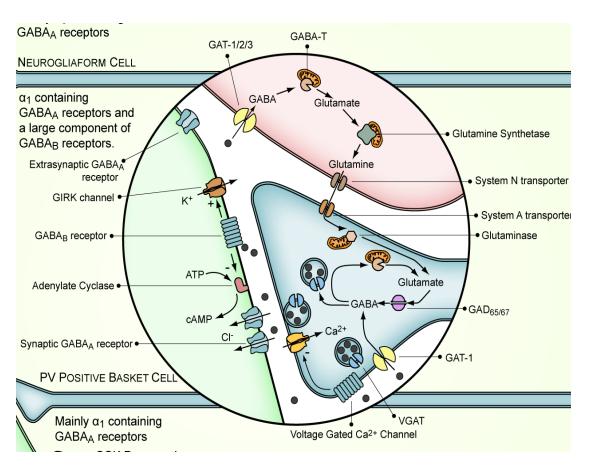
Bacteroides alone constitute about 30% of all bacteria in the gut.....

Carbohydrate fermentation and absorption

Digest starch, plant fiber, pectin into SCFAs (short chain fatty acids) viz. acetic acid, propionic acid, butyric acid. Digest proteins like collagen, elastin.

Repression of pathogenic microbial growth


Competition for nutrition, (ruminococus and prevettella) attachment. Produce bacteriocins, Lactic acid.Also Bacillus strains produces Bacilysin which kills closteridium botullinum


Metabolic function

HCA (heterocyclic amines)

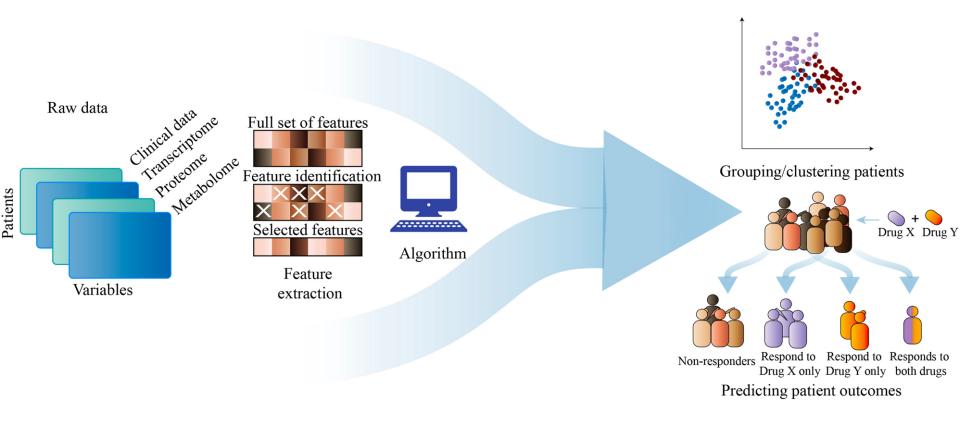
Preventing inflammatory bowel disease SCFAs prevent IBD

Preventing allergy Allergies = *C. difficile* and *S.*

Relax©

Lactobacillus spp. and Bifidobacterium spp. produce GABA

GABA's natural function is to reduce the activity of the neurons to which it binds. GABA neutralizes the overexcited neurons. (anti-stress drug : Benzodiazepine)


AI/ML in Translational Medicine

AI and ML

- Artificial Intelligence (AI) can be broadly defined as the science and engineering of making intelligent machines, especially intelligent computer programs
- Machine Learning (ML) is an AI technique that can be used to design and train software algorithms to learn from and act <u>https://www.fda.gov/medical-devices/software-medicaldevice-samd/artificial-intelligence-and-machine-learningsoftware-medical-device
 </u>

ML – Major Approaches

- Supervised learning
 - Algorithms are trained on labeled data, i.e. the desired output is known
- Unsupervised learning
 - Algorithms are trained on unlabeled data, i.e. the desired output is unknown
- Semisupervised learning, reinforcement learning, etc.

Toh TS, Dondelinger F, Wang D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine. 2019;47:607-615.

Applications

- Drug discovery
 - Designing chemical compounds
 - Drug screening
- Imaging
 - Cell microscopy and histopathology
 - Radiology
- Genomic medicine
 - Biomarker discovery Toh TS, Dondelinger F, Wang D. Looking beyond the hype: Applied AI and machine learning in translational medicine. EBioMedicine.

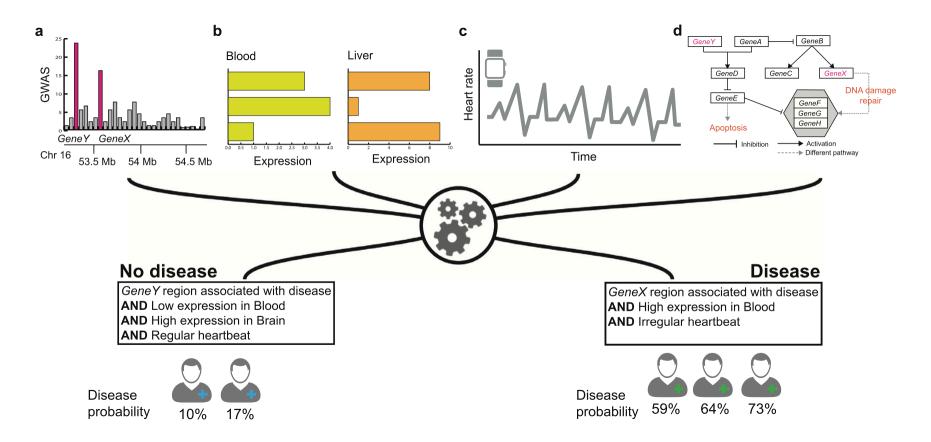
2019:47:607-615.

Integrating different modalities of data

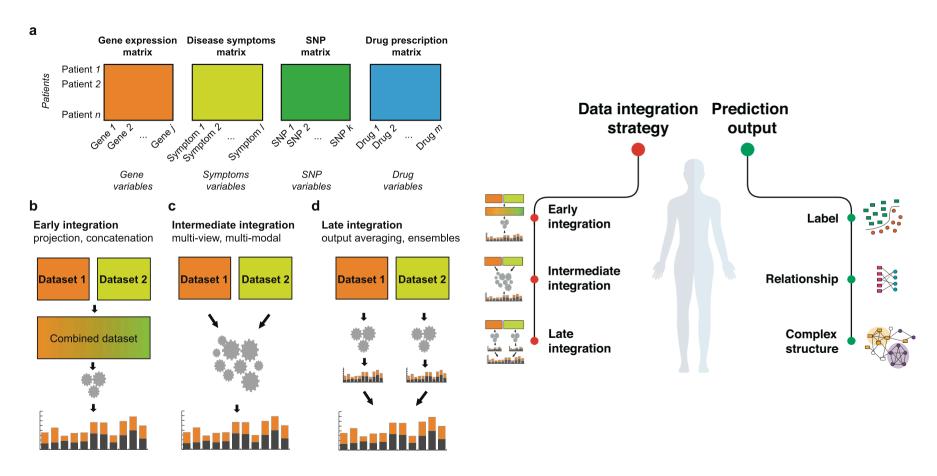
Example Applications

Unsupervised hierarchical clustering (part of ACME analysis)

 Identified associations between BRAF mutant cell lines of the skin lineage being sensitive to the MEK inhibitör

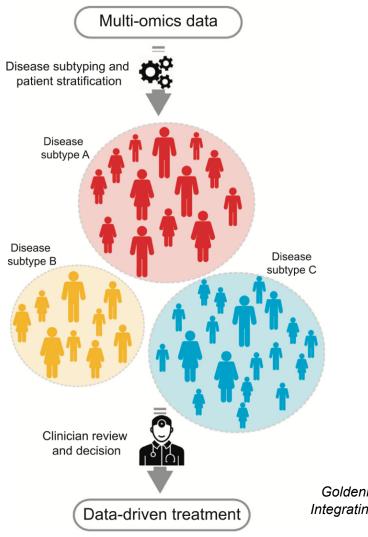

> Seashore-Iudlow B, Rees MG, Cheah JH, et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov. 2015;5(11):1210-23.

- Spectral clustering by SNF
 - Identification of new medulloblastoma subtypes

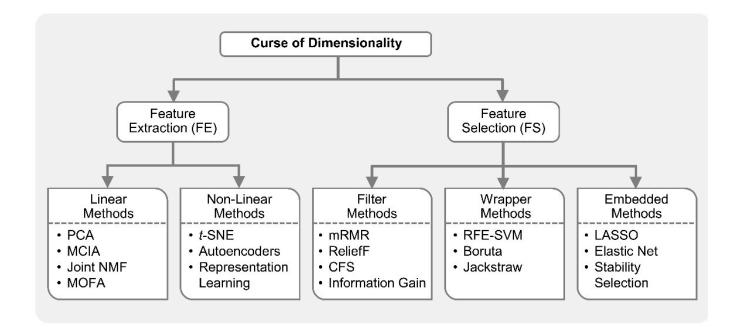

Cavalli FMG, Remke M, Rampasek L, et al. Intertumoral Heterogeneity within Medulloblastoma Subgroups. Cancer Cell. 2017;31(6):737-754.e6.

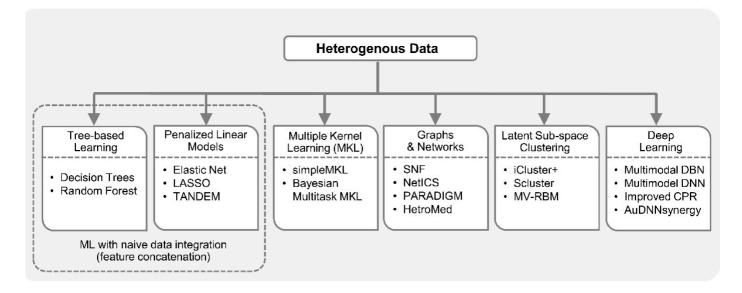
- Elastic net regression
 - Identification of BRAF and NRAS mutations in cell lines, were among the top predictors of drug sensitivity for a MEK Barretina J, Caponigro G, Stransky N, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.

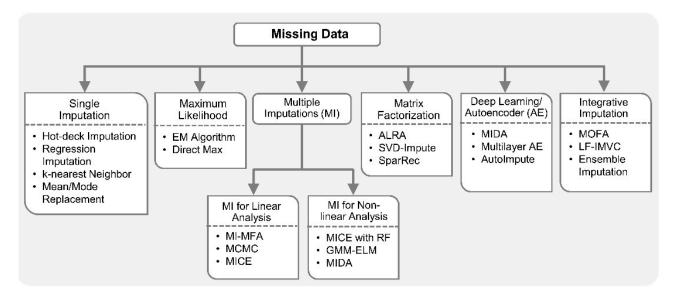
Nature. 2012;483(7391):603-7.

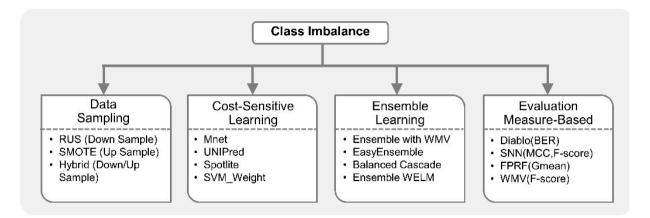


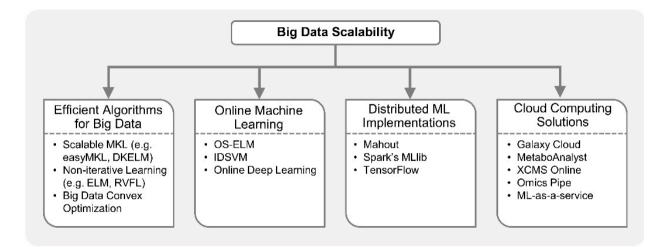
Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities. Inf Fusion. 2019;50:71-91.

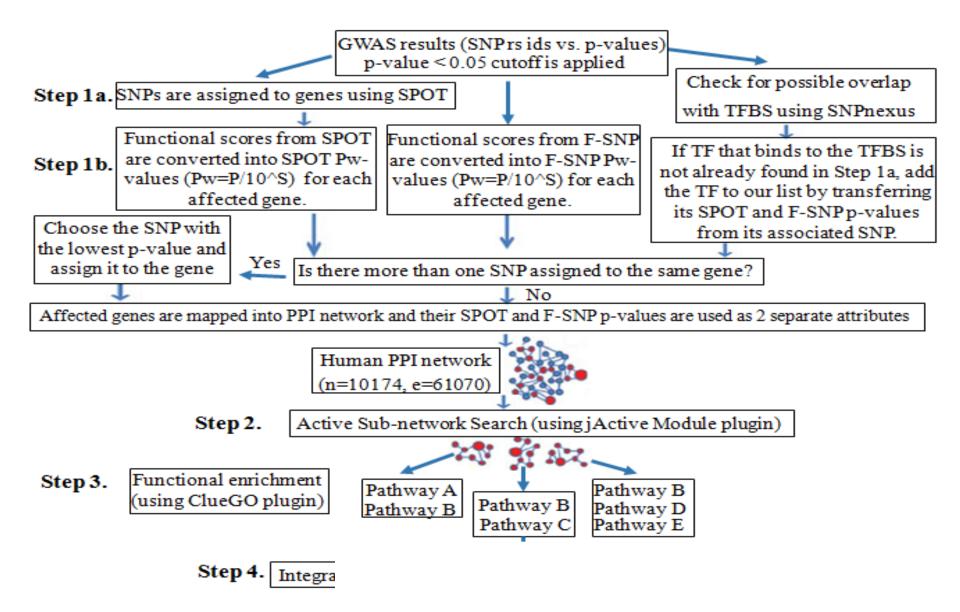



Outputs, predictions machine learning model Zitr


Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities. Inf Fusion. 2019;50:71-91.

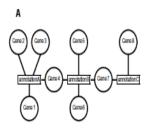


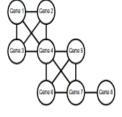

Zitnik M, Nguyen F, Wang B, Leskovec J, Goldenberg A, Hoffman MM. Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities. Inf Fusion. 2019;50:71-91.

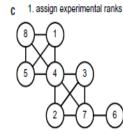


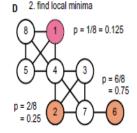
Our Methodology

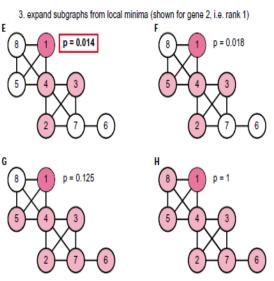
 NETWORK Based Integration of Omics Data


Our Methodology (PANOGA)




Active Subnetwork Search


- Breitling et al., 2004
 - mRNA expression data is used.
 - Significance ranks assigned to nodes.
 - Greedy search


$$p = \prod i = 0 \text{ în} - 1 \text{ m} - i/N - i$$

Partial Epilepsy Dataset

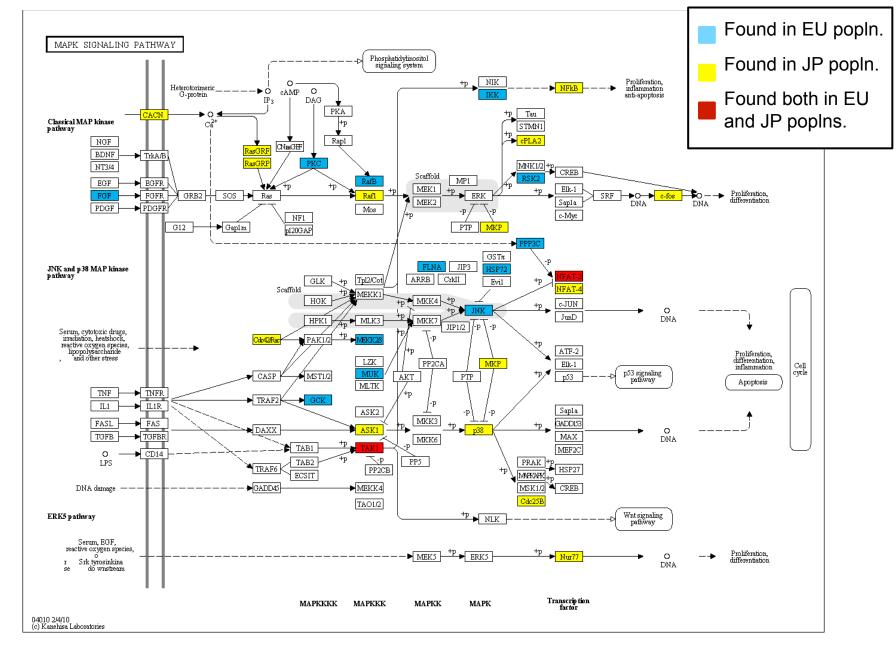
	# of Control s	# of genotyped SNPs	Platform
3,445	6,935	528,745 SNPs	Illumina, Human610- Quadv1 genotyping chips

Table 5. Summary of Partial Epilepsy (PE)dataset (Kasperaviciute, et al., 2010).

- 1429 patients with epilepsies of unknown cause (classified as "cryptogenic"), 919 cases with mesial temporal lobe epilepsy with hippocampal sclerosis, 241 with cortical malformations and 222 patients with various tumors, other smaller subgroups such as trauma, stroke, perinatal insults, infections, etc.
- Cochran-Mantel-Haenszel test results were used as the genotypic p-values of the identified SNPs.
- Using P<0.05 cutoff:
 - 28,450 SNPs were included.

KEGG Term	p values	SNPs in GWAS	SNP Targeted Genes	Previous Studies Showing Support	Wang et al. Study	OMIM		CNV Study on Epilepsy	Epi GAD	Rogic et al. Study
Complement and coagulation				(Aronica, et al., 2008; Okamoto, et al., 2010)						
cascades	2,16E-25	34	12		-	Y	-	-	-	Y
				(<u>Aronica, et al., 2008;</u> Jimenez-Mateos, et al., 2008;						
Cell cycle	1,03E-24		14	Limviphuvadh, et al., 2010)		Y	-	-	-	Y
Focal adhesion	7,10E-23	97	20	(Brockschmidt, et al., 2012)	Y	Y	Y	-	-	Y
ECM-receptor interaction	1,62E-22	62	14	(<u>Aronica, et al., 2008</u>)	Y	Y	-	-	-	Y
				(Jimenez-Mateos, et al., 2008;						
Jak-STAT signaling pathway	1,16E-21	24	16	<u>Okamoto, et al., 2010</u>)	Y	Y	-	-	-	Y
				(Jimenez-Mateos, et al., 2008;						
MAPK signaling pathway	2,32E-19	73	23	Okamoto, et al., 2010; Zhou, et al., 2011)	Y	Y	Y	-	Y	Y
Proteasome	1,15E-18	11	4	(Lauren, et al., 2010)	-	-	-	-	-	-
Ribosome	1,57E-18	2	2	(Lauren, et al., 2010)	-	-	-	-	-	Y
				(<u>Jimenez-Mateos, et al., 2008;</u> Limviphuvadh, et al., 2010;						
Calcium signaling pathway	5,73E-18	154	22	Okamoto, et al., 2010; Zhou, et al., 2011)	Y	Y	Y	Y	Y	Y
Regulation of actin cytoskeleton	9,23E-18	88	19		Y	Y	-	Y	-	Y
Adherens junction	1,01E-17	79	13		-	-	Y	-	-	Y
Pathways in cancer	3,94E-17	112	22		Y	Y	Y	-	-	Y
Gap junction	6,32E-17	147	18	(Lauren, et al., 2010)	Y	Y	Y	-	-	Y
Apoptosis	3,72E-16	37	13	(Jimenez-Mateos, et al., 2008)	Y	Y	-	-	-	Y
Long-term depression	2,90E-15	151	15	(Lauren, et al., 2010)	Y	Y	Y	Y	Y	Y
				(Jimenez-Mateos, et al., 2008;						
Axon guidance	4,01E-15	59	12	Limviphuvadh, et al., 2010)	-	-	-	-	-	Y
Fc gamma R-mediated phagocytosis	2,22E-14	66	12		Y	Y	Y	Y	-	Y
Tight junction	2,82E-14	82	13		Y	Y	Y	-	-	Y
ErbB signaling pathway	4,04E-14	86	12		Y	Y	Y	-	-	Y
Wnt signaling pathway	6,28E-14	44	13	(Aronica, et al., 2008; Okamoto, et al., 2010)	Y	Y	Y	-	-	Y

Table 6. Comparison of the top 20 SNP-targeted pathways with the pathways of the known genes, as associated to partial epilepsy.


Intracranial Aneurysm Dataset

Populatio n	# of Cases	# of Controls	# of genotyped SNPs	Platform
European	2,780	12,515	832,000	Illumina
Japanese	1,069	904	312,712	Illumina,

 Table 7. Summary of Intracranial Aneurysm (IA)dataset.

- In both datasets, each SNP's genotypic p-value of association is calculated via Cochran-Armitage trend test.
- Using P<0.05 cutoff:
 - 44,351 SNPs were included for EU population,
 - 14,034 SNPs were included for JP population.

		P-values		Ran	# of Associated SNPs in GWAS Rank		in	# of Commo n SNPs in	# of SNP Targeted Genes (STGs)		# of Com- mon STGs	% Common Genes in Both Populations		Common SNPs in
	KEGG Term	EU	JP	EU	JP	EU	JP	GWAS	EU	JP		EU	JP	GWAS
	MAPK signaling pathwav *	3.53E-27	2.70E-18	1	8	<u>13</u> 3	43	1	14	18	2	14.29	11.11	rs791062
# of SNP Targeted Genes in Top 10 Pathways						\$	18	1	11	10	2	18.18	20	rs744910
EU population JP population						G	20	3	15	9	5	22.22	55 56	rs2053423. rs1440375.
62 15 51						15	0	6	4	0	<u>33.33</u> 0	55.56 0	rs744910	
					7	45	1	21	14	5	23.81	35.71	rs4678167	
						2	1	0	6	1	0	0	0	
						5	34	1	13	11	2	15.38	18.18	rs1561798
# of SNPs from GWAS in Top 10 Pathways					5	13	0	8	4	1	12.5	25		
	EU population JP population 724 6 195					2	36	1	18	14	1	5.556	7.143	rs4678167
						<u>}</u> r t	14 Doth p	0 populatio	7 ns in	7 IA. 7 (1 Dut of th	14.29 ne top 1	14.29 0 pathw	ays are
						re	related diseases in KEGG Disease Pathways Database.							tabase.

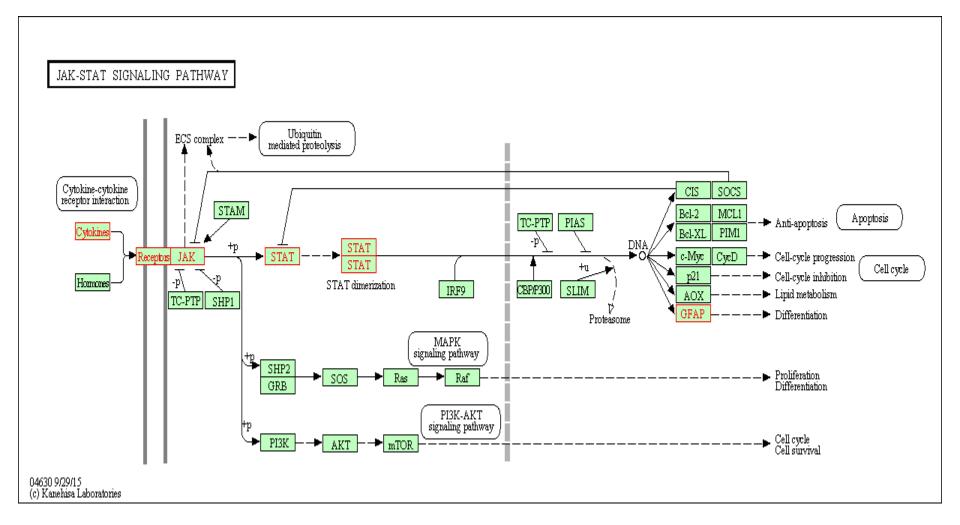
Figure 17. KEGG pathway map for MAPK signaling pathway. The set of genes shown in blue includes genes that are found for EU dataset; yellow includes genes that are found for JP dataset; red includes genes that are found both by EU and JP GWAS of IA.

Behcet's disease dataset

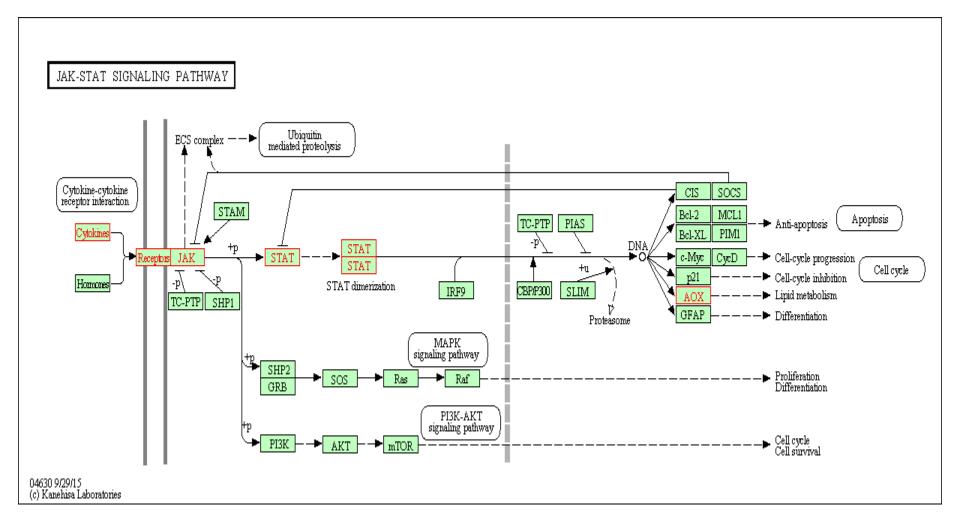
Population		# of Controls	# of genotyped SNPs	Platform
Turkish	1,215	1,278	311,459	Illumina, Infinium assay
Japanese	612	740	500,568	Affymetrix Gene Chip Human Mapping 500K

 Table 10. Summary of Behcet's disease dataset.

- In both datasets, each SNP's genotypic p-value of association is calculated via calculated via allelic chi-squared test.
- Using P<0.05 cutoff:
 - 18,479 SNPs were included for TR population,
 - 20,594 SNPs were included for JP population.

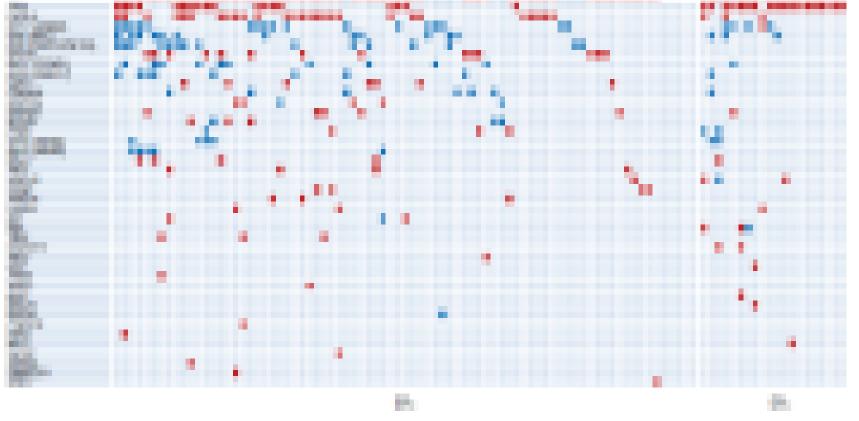

Common pathways in Turkish and Japanese Populations

Antigen processing and presentation Adipocytokine signaling pathway Aldosterone-regulated sodium reabsorption Amoebiasis AMPK signaling pathway Axon guidance cAMP signaling pathway cGMP-PKG signaling pathway Circadian rhythm ErbB signaling pathway Fc gamma R-mediated phagocytosis Herpes simplex infection Inflammatory mediator regulation of TRP channels


Jak-STAT signaling pathway MAPK signaling pathway Maturity onset diabetes of the young NOD-like receptor signaling pathway Notch signaling pathway PPAR signaling pathway Prolactin signaling pathway Rap1 signaling pathway Ras signaling pathway Tight junction Tuberculosis Wnt signaling pathway

* Common pathways (25) in first 40 pathways of each population

Highest scoring Jak-STAT path in Turkish population



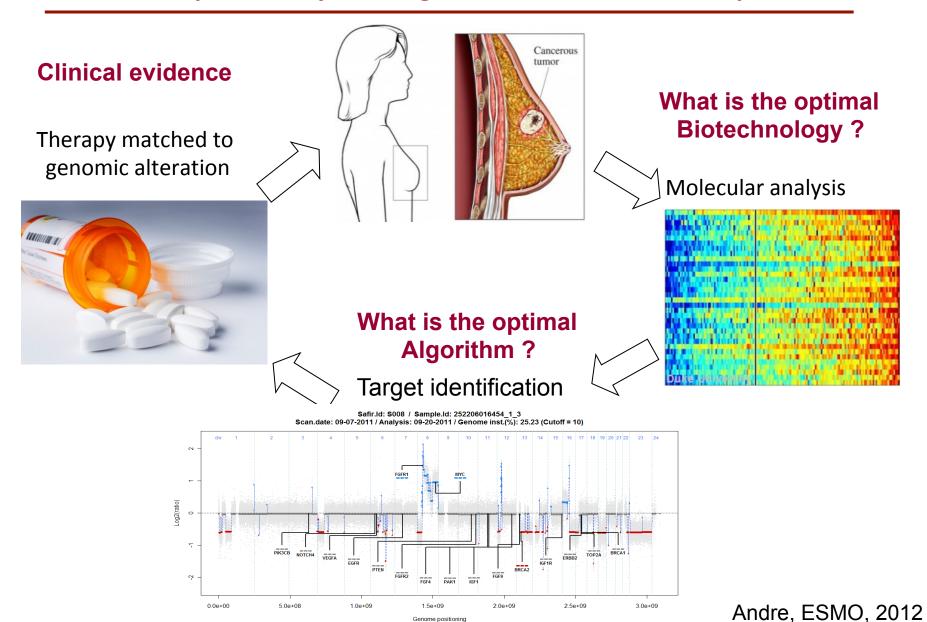
Highest scoring Jak-STAT path in Japanese population

Frequent cancers include high number of very rare genomic segments

- Somatic mutation
- Copy Number Variation

(whole genome sequencing breast cancers)

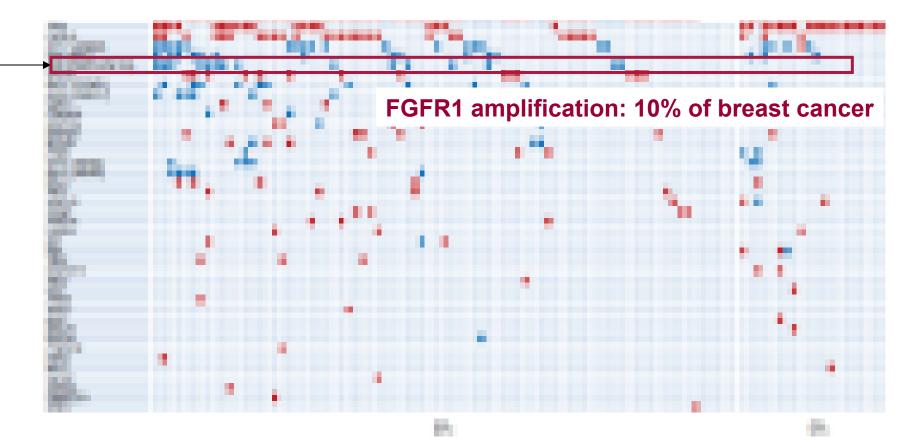
Stephens, Nature, 2012

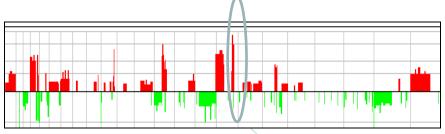

Identification of Cancer drivers

 Identification of individualized driver mechanisms that lead to tumour specific cancer progression can improve patient's outcome

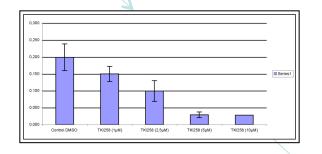
Goal: Identification of targetable driver mechanism

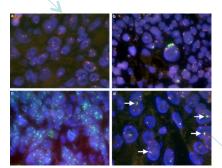
Precision Medicine


Concept: Identify the targets to be treated in each patient

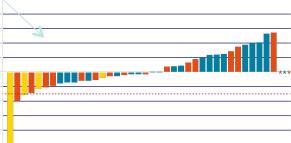

Prod: ugf / MArray: Agilent-022060 SurePrint G3 Human CGH Microarray 4x180K / GenomeDataBase: Human Feb. 2009(GRCh37/hg19) / Script: FC_Agilent_ModulesR_v2/09.18.11

Stratified medicine

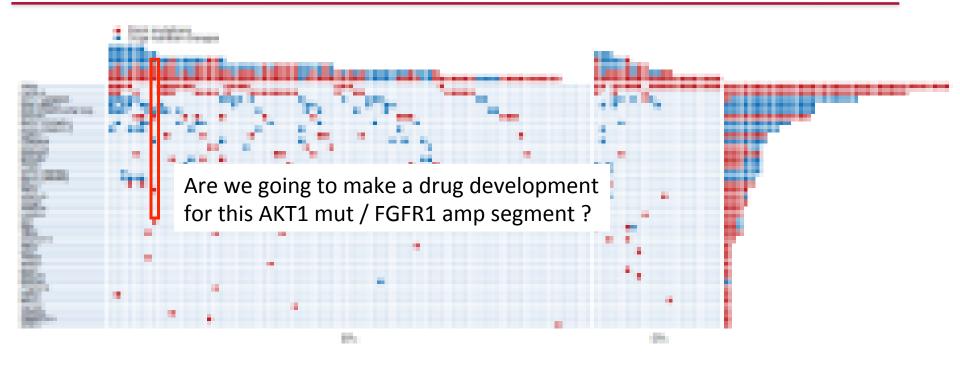

• Drug development or implementation in a strate defined by a molecular alteration


Translational research to feed stratified medicine

FGFR1: amplification in 10% BC

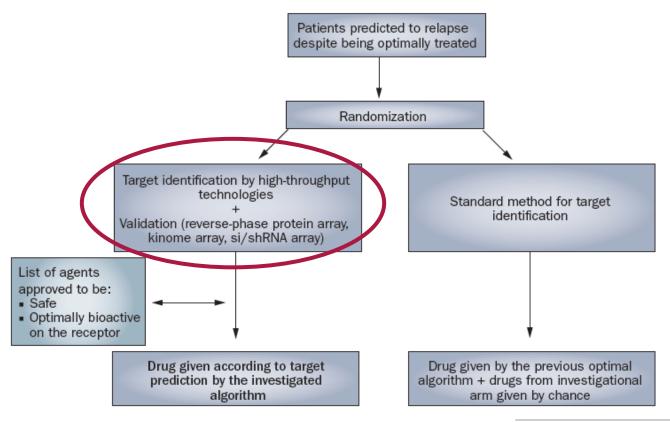


FGFR1 inhibitors present higher sensitivity on FGFR1-amplified CC



Set-up genomic test (FISH)

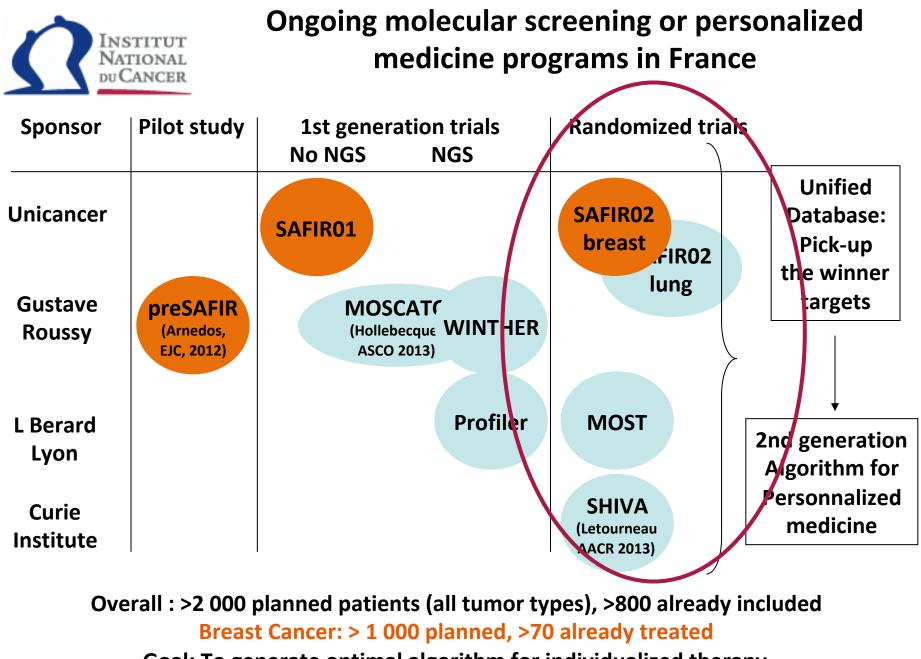
Run phase II trial Testing the FGFR1 Inh in patients with FGFR1 amp BC


Evolution: GENOMIC DISEASES ARE BECOMING TO RARE OR COMPLEX TO ALLOW DRUG DEVELOPMENT IN GENOMIC SEGMENTS

How to move forward ?

Stephens, Nature, 2012

Implications of Personalized Medicine


OPINION

How to move there ???

Implications of personalized medicine —perspective from a cancer center

Thomas Tursz, Fabrice Andre, Vladimir Lazar, Ludovic Lacroix and Jean-Charles Soria

Tursz, T. et al. Nat. Rev. Clin. Oncol. 8, 177–183 (2011)

Goal: To generate optimal algorithm for individualized therapy

SAFIR01

- 423 patients were included, and biopsy samples were obtained from 407 (metastatic breast cancer was not found in four). CGH array and Sanger sequencing were feasible in 283 (67%) and 297 (70%) patients, respectively.
- A targetable genomic alteration was identified in 195 (46%) patients, most frequently in PIK3CA (74 [25%] of 297 identified genomic alterations), CCND1 (53 [19%]), and FGFR1 (36 [13%]). 117 (39%) of 297 patients with rare genomic alterations (<5% of the general population), including AKT1 mutations, and EGFR, MDM2, FGFR2, AKT2, IGF1R, and MET high-level amplifications.
- Therapy could be personalised in 55 (13%) of 423 patients. Of the 43 patients who were assessable and received targeted therapy, four (9%) had an objective response, and nine others (21%) had stable disease for more than 16 weeks.
- Serious (grade 3 or higher) adverse events related to biopsy were reported in four (1%) of enrolled patients, including pneumothorax (grade 3, one patient), pain (grade 3, one patient), haematoma (grade 3, one patient), and haemorrhagic shock (grade 3, one patient).

A Protocol to Determine Somatic Modifications

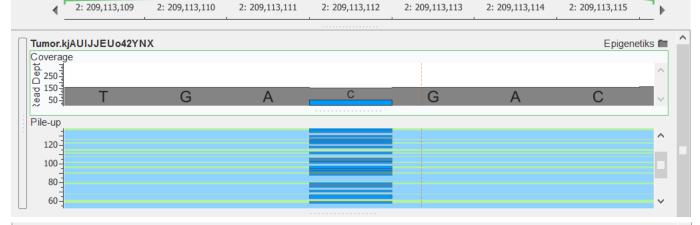
- Exome Sequencing of tumour sample and control sample(Blood)
- Identification of somatic alterations in the tumour

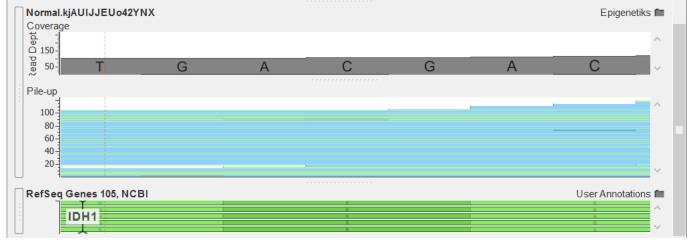
Driver mutations

Copy Number Variations (CNV)

SNPs

Ch r	Pos	Ref -> Alt Genome Protein Effect	Gen e	dbSNP	CGC* Tumor Type	DrugBank
2	209113112	C -> T R -> H Missens e	IDH1	rs12191350 0	Glioblastoma	-
17	7577545 * Cancer Ge	T -> C M -> V Missens ene Census	TP53	rs48335269 5 rs39751643 7	Glioma	Acetylsalic ylic acid


SNPs


Ch r	Pos	Ref -> Alt Genome Protein	Gen e	dbSNP	CGC* Tumor Type	DrugBank
		Effect				
2	209113112	C -> T R -> H	IDH1	rs12191350 0	Glioblastom a	-
		Missens e				
17	7577545	T -> C M -> V Missens e	TP53	rs48335269 5 rs39751643 7	Glioma	Acetylsalicyli c acid
	* Cancer Ge			rs39751643 7		acid

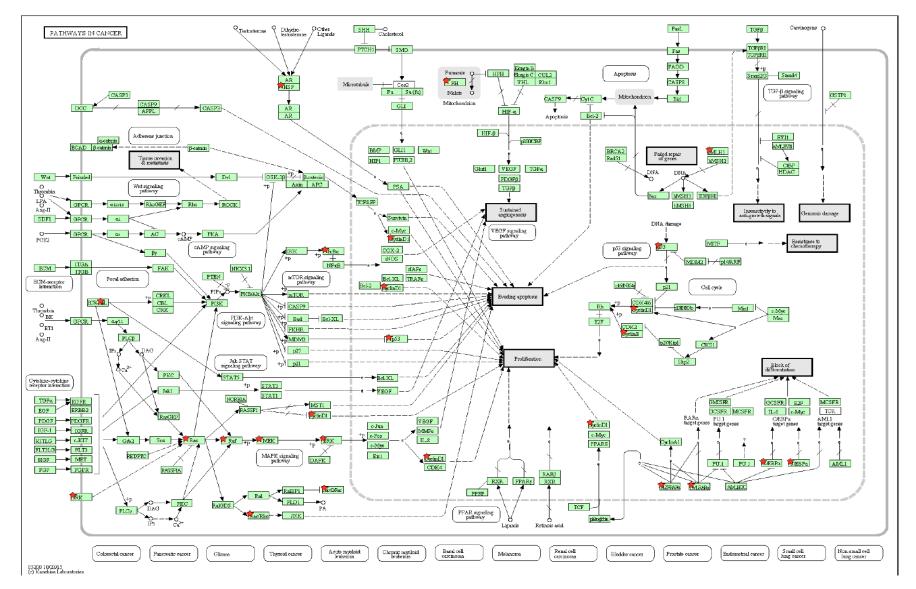
Chr2: 209,113,112

Matches / Mismatches / Deletions

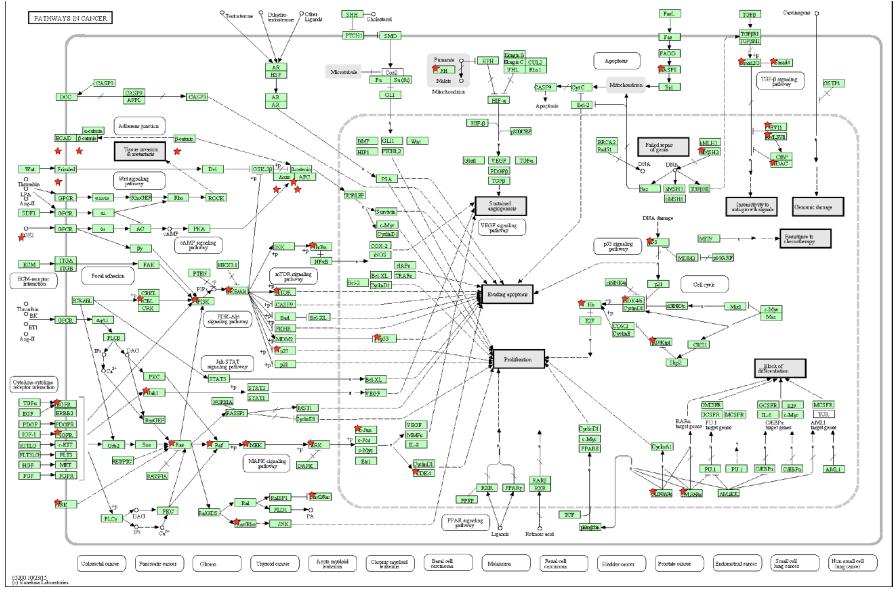
		Base	Count	% of Total	Mean Quality
SNPs	(match)	С	99	66.4	30.8
	(mismatch)	Т	50	33.6	32.3
	Total		149	100	31.3

Copy Number Variation

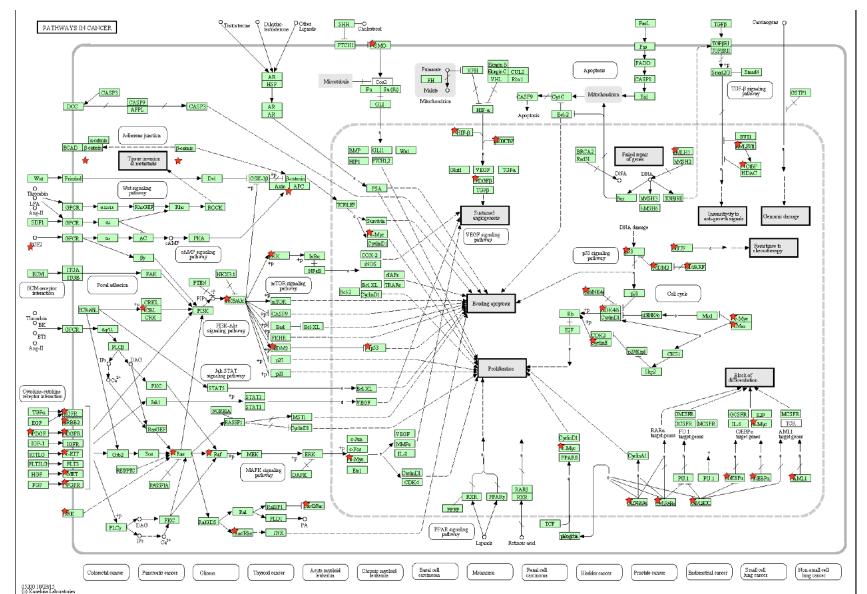
Ch r	Sta	rt	End	Nor De		Tumor Depth	Log Ratio
8	2952399		2952400	20	.6	4.3	-2.348
	0		1		CN	V	
					Anı	notation	
CNV type			Disease			latform	Pubmed
Deletion		Me	Medulloblastoma			IP arrays	21979893
		(Glioblastom	а			
Loss		multiforme				CGH	19960244
			Glioblastoma			ventional	
Loss		multiforme				CGH	21080181
	Glioblastoma		а				
L	Loss		multiforme		aCGH	21080181	
L	oss	Me	dulloblastc		CGH	16968546	


Scoring Algorithm

- Scoring system to identify major pathways leading to tumor progress
- Scoring System for targetable alterations in the tumor
- Scoring system for available drugs targeting most of the driver alterations

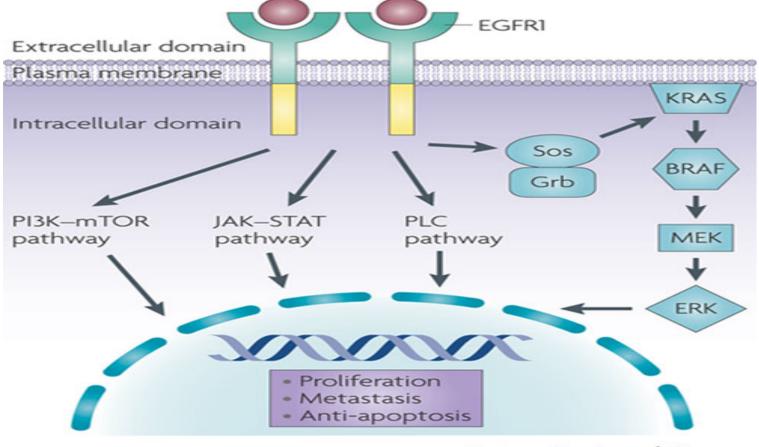

EXAMPLES of Exome Sequencing Data

- Patient 1 has CyclinD1 pathway over activated
- Patient 2 has Mtor pathway and CDK4 pathway activate
- Patient 3 has over amplification of Growth Factor receptors along with c-myc amplification
- Each has different driver mechanisms and requires different theraupeutical scheme


Patient 1

Patient 2

Patient 3


Genotyping for prevention Timoma (Sternum)Patient 4

- AMPD1 chr1 115236056_115236057
- GA 192 snp rs17602729 Caa/Taa
- Q/* protein_coding stop_gain stop_gained HIGH pathogenic

Muscle_AMP_deaminase_deficiency| **Myestenia Gravis**

Target	Cancer	Variation type	Marker	Drug	Test
EGFR	Lung cancer	Mutation	Predict benefit to EGFR TKIs	Erlotinib	DNA
				Gefitinib	
ALK	Lung cancer	Rearrangement	Predict response to ALK inhibitors	Crizotinib	FISH
ROS	Lung cancer	Rearrangement	Predict response to TKIs	Crizotinib	FISH
RET	Lung cancer	Rearrangement	Predict response to TKIs	Vandetanib	FISH
BRAF	Melanoma	Mutation	Predict response to BRAF inhibitors	Vemurafenib	DNA
				Dabrafenib	
KRAS	Colorectal cancer	Mutation	Predict lack of response to anti- EGFR antibodies	Panitumumab	DNA
				Cetuximab	
HER2	Breast cancer	Amplification	Predict response to anti-HER2 antibodies	Trastuzumab	FISH, IHC
	Gastric cancer	Overexpression		Lapatinib	
		-		Pertuzumab	
КІТ	GIST	Mutation	Predict response to c-Kit inhibitors	Imatinib	IHC
Estrogen receptor	Breast cancer	Overexpression	Predict response	Examestane	IHC
				Fulvestrant	
				Letrozole	
Due ve eteren e				Tamoxifen	
Progesterone receptor	Breast cancer	Overexpression	Predict response	Examestane	IHC
				Letrozole	

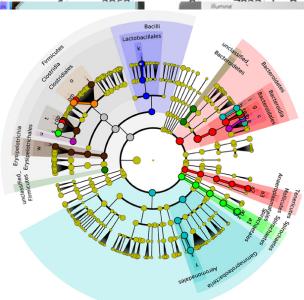
Personalized Treatment Imatinib

Nature Reviews | Cancer

Our Microbiome Projects

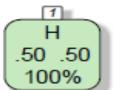
- METASUB
- Breast Feeding vs. Formula Feeding (B. Infantes)
- Wellness Bioinformatics
- MS hastalarında fekal transplantasyon

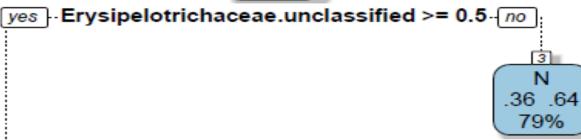
İBS Fonksyonel bir hastalık mıdır? Türk Kohortlarında Prospektif, Kontrollü Mikrobiyota Çalışması


Munkhtsetseg Banzragch, Orhan Özcan, Osman Uğur Sezerman, Sinem Öktem, Özgür Kurt, Nurdan Tözün

Acibadem Üniversitesi Tıp Fakültesi, Gastroenteroloji Bilim Dalı, Biyoistatistik ve Tıp Bilişimi Ana Bilim Dalı, Tibbi Mikrobiyoloji Bilim Dalı, İstanbul

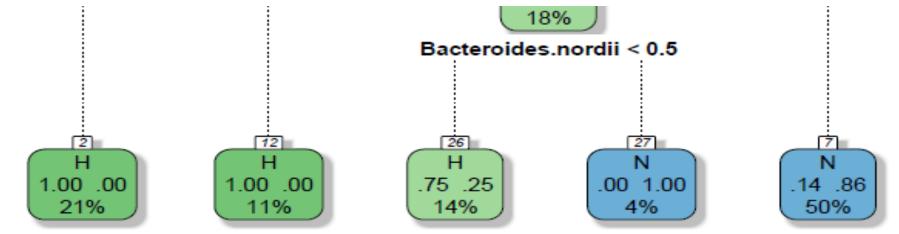
Gereç ve Yöntem


- İBS tanı kriterlerini karşılayan, Gastroenteroloji Bilim dalına başvuran 14 hastadan kolonoskopi ile örnek alımı gerçekleşti
- Yaş ve cinsiyet uyumlu tarama amaçlı kolonoskopi yapılan 14 sağlıklı kişiden kontrol grubu oluşturuldu
- Hastalardan ve kontrol gruplarından yaşam tarzı ve yeme alışkanlıkları ile ilgili anket dolduruldu
- 704 taksonomik unit 496 tür elde edildi. Bir grupta diğerine göre 2 kat az veya çok olanların tutulduğu filtre sonrası 30 tür elde edildi. Bu 30 türden bir sınıfta olup diğerinde olmayanlardan ya da az olanlardan bir sınıflama karar ağacı oluşturuldu


1	E7	E3	E5	F1	F3	F7	Row max	Taxonomic lineages (817 rows)
45	60	15	0	1	14	2	13943	Total reads with no similarities
63108	105754	119864	28444	73025	53242	74027	3799077	Total original input reads
38890	102148	105729	24738	67096	38162	72095	2591870	Total reads mapped to a unique species
4361	0	33943	0	29	0	2015	76665	d_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Entero
1431	69687	265	13110	0	21302	62176	71385	dBacteria; pProteobacteria; cGammaproteobacteria; oPseud
3523	3846	27	13	53846	986	13	53846	dBacteria; pProteobacteria; cGammaproteobacteria; oPseud
3279	0	7191	5	3033	1125	79	32327	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
2980	35	717	477	532	917	136	23270	d_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachno
38	1	21197	0	5	211	0	21197	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
0	15121	0	1411	410	0	6765	15121	d_Bacteria; p_Proteobacteria; c_Gammaproteobacteria; o_Pseud
0	1388	0	0	0	0	0	12437	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
559	8	353	0	114	680	0	12280	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
926	4	278	0	1	0	0	11201	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
1842	86	7444	392	133	2536	236	11184	d_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Rumin
2221	3	364	16	21	83	38	10492	d_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachno
0	0	230	0	0	637	0	9463	d_Bacteria; p_Firmicutes; c_Clostridia; o_Clostridiales; f_Lachno
239	9	7721	2	137	664	8	7721	dBacteria; pBacteroidetes; cBacteroidia; oBacteroidales; f
	_	_	_			-		

a: Parabacteroides b: unclassified c: Proyhyromonadaceae d: Hallella e: Prevotella f: unclassified g: Prevotellaceae h: Bacteroidales i: unclassified j: Lactobacillaceae h: Blautia m: Roseburia o: Lachoacillaceae h: Blautia m: Roseburia o: Lachoacillaceae h: Blautia m: Roseburia c. Lachoacillaceae h: Catonospiraceae p: Butyricicoccus g: Faecalibacter custilibacter f: Oacillibacter f: Cacillibacter f: Sunclassified f: Ruminococcaceae f: Suiccinivibrio f: Suiccinivibrio f: Suiccinivibrio f: Suiccinivibrio f: Suiccinivibrio f: Suiccinetaceae af: Spirochaetaceae af: Spirochaetaceae af: Anaeroplasmataceae

Proteobacteria


Escherichia.Shigella.unclassified >= 0.5

Success! The contingency table below provides the following information: the observed cell totals, (the expected cell totals) and [the chi-square statistic for each cell].

The chi-square statistic, *p*-value and statement of significance appear beneath the table. Blue means you're dealing with dependent variables; red, independent.

	IBS	Kontrol	Marginal Row Totals
IBS Approved	11 (6.5) [3.12]	2 (6.5) [3.12]	13
Non Detected	3 (7.5) [2.7]	12 (7.5) [2.7]	15
Marginal Column Totals	14	14	28 (Grand Total)

The chi-square statistic is 11.6308. The *p*-value is .000649. This result is significant at p < .05.

- THANKS to
- Ege Ülgen
- Burcu Bakır Gungor
- Ozan Ozisik
- Orhan Özcan