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“Advancing the state-of-the-art in 
AI through open research for the 
benefit of all.” 

Mission

• Openness: Publish and open-source 
• Freedom: Researchers have complete control on their agenda  
• Collaboration: With internal and external partners 
• Excellence: Focus on most impactful projects 
• Scale: Operate at large scale 

Values









Translation 
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50%
of users have at least one friend 
with a different native language

~6B
translated posts every day  

on Facebook





Artificial Intelligence Research

From Visual Recognition...



• Repeatedly filters image 

• Filters are learned based 
on labeled training images 

• Final representation is 
"semantic" 

Convolutional Networks 
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LeNet

AlexNet

VGG Inception

ResNet



Ingredients 
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Data

Models Computation

• Three main ingredients 
came together in 
recent years



• First, train a model on a 
large "source" dataset 
(say, ImageNet) 

Pretraining 
Vision Models 
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• First, train a model on a 
large "source" dataset 
(say, ImageNet) 
 
 

• Finetune on a small 
"target" dataset 

• Measure accuracy on 
target task 

Pretraining 
Vision Models 

12



Can we use large amounts of weakly 
supervised images for pretraining? 

Research question

• We pretrain models by predicting relevant hashtags for images 
• We pretrain models to predict 17.5K hashtags for 3.5B images 
• After finetuning, we beat the state-of-the-art on, e.g., ImageNet 

Highlights

Yixuan Li Ashwin BharambeDhruv Mahajan Ross Girshick Vignesh Ramanathan Kaiming He Manohar Paluri



• It is easy to get billions of public images and 
hashtags 

• Hashtags are more structured than captions  

• Hashtags were often assigned to make images 
"searchable"

Hashtag Supervision 
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#cheesecake #birthday



• But hashtags are not perfect supervision
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#cat #travel #thailand #family

Hashtag Supervision 



• But hashtags are not perfect supervision  

• Some hashtags are not visually relevant
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#cat #travel #thailand #family

Hashtag Supervision 



• But hashtags are not perfect supervision  

• Some hashtags are not visually relevant  

• Other hashtags are not in the photo
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#cat #travel #thailand #family

Hashtag Supervision 



• But hashtags are not perfect supervision  

• Some hashtags are not visually relevant  

• Other hashtags are not in the photo 

• And there are many false negatives
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#cat #travel #thailand #family
#building #fence #...

Hashtag Supervision 



• But hashtags are not perfect supervision  

• Some hashtags are not visually relevant  

• Other hashtags are not in the photo 

• And there are many false negatives 

• Is scaling up sufficient to make up for this noise?
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#cat #travel #thailand #family
#building #fence #...

Hashtag Supervision 



• Select a set of hashtags 

• Download all public Instagram images that has 
at least one of these hashtags 

• Use WordNet synsets to merge hashtags into 
canonical form (merge #brownbear and 
#ursusarctos)

Experiments 
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• Select a set of hashtags 

• Download all public Instagram images that has 
at least one of these hashtags 

• Use WordNet synsets to merge hashtags into 
canonical form (merge #brownbear and 
#ursusarctos) 

• The final list has 17,517 hashtags

Experiments 

...



• Select a set of hashtags 

• Download all public Instagram images that has 
at least one of these hashtags 

• Use WordNet synsets to merge hashtags into 
canonical form (merge #brownbear and 
#ursusarctos) 

• The final image set has ~3.5B images 

Experiments 
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I cannot show you the images, but you can look...  
 
https://www.instagram.com/explore/tags/brownbear/ 
https://www.instagram.com/explore/tags/crane/ 
https://www.instagram.com/explore/tags/... 



• Train ResNeXt-32xCd convolutional networks  

• Use c-of-K vector to represent multiple labels  

• Train to minimize multi-class logistic loss 

Experiments 
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Aggregated Residual Transformations for Deep Neural Networks
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Abstract

We present a simple, highly modularized network archi-

tecture for image classification. Our network is constructed

by repeating a building block that aggregates a set of trans-

formations with the same topology. Our simple design re-

sults in a homogeneous, multi-branch architecture that has

only a few hyper-parameters to set. This strategy exposes a

new dimension, which we call “cardinality” (the size of the

set of transformations), as an essential factor in addition to

the dimensions of depth and width. On the ImageNet-1K

dataset, we empirically show that even under the restricted

condition of maintaining complexity, increasing cardinality

is able to improve classification accuracy. Moreover, in-

creasing cardinality is more effective than going deeper or

wider when we increase the capacity. Our models, named

ResNeXt, are the foundations of our entry to the ILSVRC

2016 classification task in which we secured 2nd place.

We further investigate ResNeXt on an ImageNet-5K set and

the COCO detection set, also showing better results than

its ResNet counterpart. The code and models are publicly

available online
1
.

1. Introduction

Research on visual recognition is undergoing a transi-
tion from “feature engineering” to “network engineering”
[25, 24, 44, 34, 36, 38, 14]. In contrast to traditional hand-
designed features (e.g., SIFT [29] and HOG [5]), features
learned by neural networks from large-scale data [33] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 28].
Nevertheless, human effort has been shifted to designing
better network architectures for learning representations.

Designing architectures becomes increasingly difficult
with the growing number of hyper-parameters (width2, fil-
ter sizes, strides, etc.), especially when there are many lay-
ers. The VGG-nets [36] exhibit a simple yet effective strat-
egy of constructing very deep networks: stacking build-

1https://github.com/facebookresearch/ResNeXt
2Width refers to the number of channels in a layer.
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Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

ing blocks of the same shape. This strategy is inherited
by ResNets [14] which stack modules of the same topol-
ogy. This simple rule reduces the free choices of hyper-
parameters, and depth is exposed as an essential dimension

in neural networks. Moreover, we argue that the simplicity
of this rule may reduce the risk of over-adapting the hyper-
parameters to a specific dataset. The robustness of VGG-
nets and ResNets has been proven by various visual recog-
nition tasks [7, 10, 9, 28, 31, 14] and by non-visual tasks
involving speech [42, 30] and language [4, 41, 20].

Unlike VGG-nets, the family of Inception models [38,
17, 39, 37] have demonstrated that carefully designed
topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [38, 39], but an important common property is
a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1⇥1 convolutions), transformed by a set of specialized
filters (3⇥3, 5⇥5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a
strict subspace of the solution space of a single large layer
(e.g., 5⇥5) operating on a high-dimensional embedding.
The split-transform-merge behavior of Inception modules
is expected to approach the representational power of large
and dense layers, but at a considerably lower computational
complexity.

Despite good accuracy, the realization of Inception mod-
els has been accompanied with a series of complicating fac-
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• Train ResNeXt-32xCd convolutional networks  

• Use c-of-K vector to represent multiple labels  

• Train to minimize multi-class logistic loss 

Experiments 
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Abstract

We present a simple, highly modularized network archi-

tecture for image classification. Our network is constructed

by repeating a building block that aggregates a set of trans-

formations with the same topology. Our simple design re-

sults in a homogeneous, multi-branch architecture that has
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dataset, we empirically show that even under the restricted
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is able to improve classification accuracy. Moreover, in-
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2016 classification task in which we secured 2nd place.

We further investigate ResNeXt on an ImageNet-5K set and

the COCO detection set, also showing better results than

its ResNet counterpart. The code and models are publicly

available online
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1. Introduction

Research on visual recognition is undergoing a transi-
tion from “feature engineering” to “network engineering”
[25, 24, 44, 34, 36, 38, 14]. In contrast to traditional hand-
designed features (e.g., SIFT [29] and HOG [5]), features
learned by neural networks from large-scale data [33] re-
quire minimal human involvement during training, and can
be transferred to a variety of recognition tasks [7, 10, 28].
Nevertheless, human effort has been shifted to designing
better network architectures for learning representations.

Designing architectures becomes increasingly difficult
with the growing number of hyper-parameters (width2, fil-
ter sizes, strides, etc.), especially when there are many lay-
ers. The VGG-nets [36] exhibit a simple yet effective strat-
egy of constructing very deep networks: stacking build-
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Figure 1. Left: A block of ResNet [14]. Right: A block of
ResNeXt with cardinality = 32, with roughly the same complex-
ity. A layer is shown as (# in channels, filter size, # out channels).

ing blocks of the same shape. This strategy is inherited
by ResNets [14] which stack modules of the same topol-
ogy. This simple rule reduces the free choices of hyper-
parameters, and depth is exposed as an essential dimension

in neural networks. Moreover, we argue that the simplicity
of this rule may reduce the risk of over-adapting the hyper-
parameters to a specific dataset. The robustness of VGG-
nets and ResNets has been proven by various visual recog-
nition tasks [7, 10, 9, 28, 31, 14] and by non-visual tasks
involving speech [42, 30] and language [4, 41, 20].

Unlike VGG-nets, the family of Inception models [38,
17, 39, 37] have demonstrated that carefully designed
topologies are able to achieve compelling accuracy with low
theoretical complexity. The Inception models have evolved
over time [38, 39], but an important common property is
a split-transform-merge strategy. In an Inception module,
the input is split into a few lower-dimensional embeddings
(by 1⇥1 convolutions), transformed by a set of specialized
filters (3⇥3, 5⇥5, etc.), and merged by concatenation. It
can be shown that the solution space of this architecture is a
strict subspace of the solution space of a single large layer
(e.g., 5⇥5) operating on a high-dimensional embedding.
The split-transform-merge behavior of Inception modules
is expected to approach the representational power of large
and dense layers, but at a considerably lower computational
complexity.

Despite good accuracy, the realization of Inception mod-
els has been accompanied with a series of complicating fac-

1

ar
X

iv
:1

61
1.

05
43

1v
2 

 [c
s.C

V
]  

11
 A

pr
 2

01
7

most experiments use ResNeXt-101 32x16d



Fix Model; 
Vary Data 
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Target task: ImageNet

• Pretrain model on 
ImageNet or Instagram  

• Finetune on ImageNet

Models available in PyTorch Hub!



Fix Model; 
Vary Data 
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Target task: ImageNet

• Pretrain model on 
ImageNet or Instagram  

• Finetune on ImageNet

"standard" ImageNet 
training

Models available in PyTorch Hub!



Fix Model; 
Vary Data 
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Target task: ImageNet

• Pretrain model on 
ImageNet or Instagram  

• Finetune on ImageNet

pre-training on 1B  
Instagram images,  
selected to match 
ImageNet classes

Models available in PyTorch Hub!



Fix Model; 
Vary Data 
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Target task: ImageNet

• Pretrain model on 
ImageNet or Instagram  

• Finetune on ImageNet

pretraining on 1-3.5B  
Instagram images,  
without selection

Models available in PyTorch Hub!



Fix Model; 
Vary Data 
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Target task: ImageNet

• Pretrain model on 
ImageNet or Instagram  

• Finetune on ImageNet 

• Similar results on larger 
versions of ImageNet 

Models available in PyTorch Hub!



Fix Data; 
Vary Model 
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• Increasing model capacity 
has a larger positive effect 

• Even lower error rates 
may be possible? 



Fix Data; 
Vary Model 
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• Increasing model capacity 
has a larger positive effect 

• Even lower error rates 
may be possible? 

best result: 85.4% top-1 accuracy



Learning Curves 
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• Accuracy on target task 
improves (almost) log-
linearly with data size 

• Matching hashtags to 
target task may help

Target task: ImageNet-1K Target task: ImageNet-5K

Target task: ImageNet-9K Target task: CUB-2011
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Does image recognition work  
for everyone? 

Research question

• We test cloud services for image recognition on household items 
• Images used for test come from across the world 
• Services work better in some countries than others

Highlights

Ishan MisraTerrance DeVries Changhan Wang



34

Image 
Classification 

• Is image classification solved?  
Yes? 
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Image 
Classification 

• Is image classification solved?  
Yes? No! 
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Dollar Street

• Photo collection gathered 
by Gapminder to show how 
people across the world live 

• Photos are annotated with 
object class, country, and 
family income 

• We used ~20,000 photos 
from 117 classes 

https://www.gapminder.org/dollar-street
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Results

• Average top-5 accuracy of all 
image recognition systems: 

• Amazon Rekognition 
• Google Cloud Vision 
• Clarifai 
• Microsoft Azure 
• IBM Watson  

• Accuracy varies per country  

• Results are consistent across all 
services analyzed Red: 60%; Yellow: 75%; Green: 90%
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Results

• Average top-5 accuracy of all 
image recognition systems: 

• Amazon Rekognition 
• Google Cloud Vision 
• Clarifai 
• Microsoft Azure 
• IBM Watson  

• Accuracy varies per country  

• Results are consistent across all 
services analyzed
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Results

• Analysis of only India shows this 
is not only due to income 
correlating with location
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Main problems

• Dataset collection relies on 
services that are primarily 
popular in the West
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Top results for “Wedding”

Top results for “शादी” (Wedding in Hindi)

Top results for “Spices”

Top results for “मसाल”े (Spices in Hindi)

Main problems

• Dataset collection relies on 
services that are primarily 
popular in the West 

• Most dataset collections start 
with English queries

Top results for “Wedding”

Top results for “शादी” (Wedding in Hindi)

Top results for “Spices”

Top results for “मसाल”े (Spices in Hindi)



Top results for “Wedding”

Top results for “शादी” (Wedding in Hindi)

Top results for “Spices”

Top results for “मसाल”े (Spices in Hindi)
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• Dataset collection relies on 
services that are primarily 
popular in the West 

• Most dataset collections start 
with English queries

Main problems



Artificial Intelligence Research

... to Visual Understanding



How do we measure image understanding? 
Research question

• We find problems in common benchmarks for visual understanding
Highlights

Allan Jabri Armand Joulin



• How do we measure 
understanding? 

Visual Question 
Answering 

45



• How do we measure 
understanding? 

• Proposal:  
Given an image, 
answer questions 
about that image 

Visual Question 
Answering 
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2 Jabri, Joulin, and van der Maaten

What color is the
jacket?

How many cars are
parked?

What event is this?
When is this scene
taking place?

-Red and blue. -Four. -A wedding. -Day time.
-Yellow. -Three. -Graduation. -Night time.
-Black. -Five. -A funeral. -Evening.
-Orange. -Six. -A picnic. -Morning.

Fig. 1. Four images with associated questions and answers from the Visual7W dataset.
Correct answers are typeset in green.

short text. This answer can either be selected from multiple pre-specified choices
or be generated by the system. As illustrated by the examples from the Visual7W
dataset [9] in Figure 1, VQA naturally combines computer vision with natural
language processing and reasoning, which makes it a good way to study progress
on the path from computer vision to more general artificially intelligent systems.

VQA seems to be a natural playground to develop approaches able to per-
form basic “reasoning” about an image. Recently, many studies have explored
this direction by adding simple memory or attention-based components to VQA
systems. While in theory, these approaches have the potential to perform sim-
ple reasoning, it is not clear if they do actually reason, or if they do so in a
human-comprehensible way. For example, Das et al. [10] recently reported that
“machine-generated attention maps are either negatively correlated with human
attention or have positive correlation worse than task-independent saliency”. In
this work, we also question the significance of the performance obtained by cur-
rent “reasoning”-based systems. In particular, this study sets out to answer a
simple question: are these systems better than baselines designed to solely cap-
ture the dataset bias of standard VQA datasets? We limit the scope of our study
to multiple-choice tasks, as this allows us to perform a more controlled study
that is not hampered by the tricky nuances of evaluating generated text [11, 12].

We perform experimental evaluations on the Visual7W dataset [8] and the
VQA dataset [5] to evaluate the quality of our baseline models. We: (1) study
and model the bias in the Visual7W Telling and VQA Multiple Choice datasets,
(2) measure the e↵ect of using visual features from di↵erent CNN architectures,
(3) explore the use of a LSTM as the system’s language model, and (4) study
transferability of our model between datasets.

Our best model outperforms the current state-of-the-art on the Visual7W
telling task with a performance of 65.8%, and competes surprisingly well with
the most complex systems proposed for the VQA dataset. Furthermore, our
models perform competitively even with missing information (that is, missing
images, missing questions, or both). Taken together, our results suggests that
the performance of current VQA systems is not significantly better than that of
systems designed to exploit dataset biases.
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or be generated by the system. As illustrated by the examples from the Visual7W
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VQA seems to be a natural playground to develop approaches able to per-
form basic “reasoning” about an image. Recently, many studies have explored
this direction by adding simple memory or attention-based components to VQA
systems. While in theory, these approaches have the potential to perform sim-
ple reasoning, it is not clear if they do actually reason, or if they do so in a
human-comprehensible way. For example, Das et al. [10] recently reported that
“machine-generated attention maps are either negatively correlated with human
attention or have positive correlation worse than task-independent saliency”. In
this work, we also question the significance of the performance obtained by cur-
rent “reasoning”-based systems. In particular, this study sets out to answer a
simple question: are these systems better than baselines designed to solely cap-
ture the dataset bias of standard VQA datasets? We limit the scope of our study
to multiple-choice tasks, as this allows us to perform a more controlled study
that is not hampered by the tricky nuances of evaluating generated text [11, 12].

We perform experimental evaluations on the Visual7W dataset [8] and the
VQA dataset [5] to evaluate the quality of our baseline models. We: (1) study
and model the bias in the Visual7W Telling and VQA Multiple Choice datasets,
(2) measure the e↵ect of using visual features from di↵erent CNN architectures,
(3) explore the use of a LSTM as the system’s language model, and (4) study
transferability of our model between datasets.

Our best model outperforms the current state-of-the-art on the Visual7W
telling task with a performance of 65.8%, and competes surprisingly well with
the most complex systems proposed for the VQA dataset. Furthermore, our
models perform competitively even with missing information (that is, missing
images, missing questions, or both). Taken together, our results suggests that
the performance of current VQA systems is not significantly better than that of
systems designed to exploit dataset biases.



• Feed image through 
convolutional network 

Models for VQA 

47

2 Jabri, Joulin, and van der Maaten

What color is the
jacket?

How many cars are
parked?

What event is this?
When is this scene
taking place?

-Red and blue. -Four. -A wedding. -Day time.
-Yellow. -Three. -Graduation. -Night time.
-Black. -Five. -A funeral. -Evening.
-Orange. -Six. -A picnic. -Morning.

Fig. 1. Four images with associated questions and answers from the Visual7W dataset.
Correct answers are typeset in green.

short text. This answer can either be selected from multiple pre-specified choices
or be generated by the system. As illustrated by the examples from the Visual7W
dataset [9] in Figure 1, VQA naturally combines computer vision with natural
language processing and reasoning, which makes it a good way to study progress
on the path from computer vision to more general artificially intelligent systems.

VQA seems to be a natural playground to develop approaches able to per-
form basic “reasoning” about an image. Recently, many studies have explored
this direction by adding simple memory or attention-based components to VQA
systems. While in theory, these approaches have the potential to perform sim-
ple reasoning, it is not clear if they do actually reason, or if they do so in a
human-comprehensible way. For example, Das et al. [10] recently reported that
“machine-generated attention maps are either negatively correlated with human
attention or have positive correlation worse than task-independent saliency”. In
this work, we also question the significance of the performance obtained by cur-
rent “reasoning”-based systems. In particular, this study sets out to answer a
simple question: are these systems better than baselines designed to solely cap-
ture the dataset bias of standard VQA datasets? We limit the scope of our study
to multiple-choice tasks, as this allows us to perform a more controlled study
that is not hampered by the tricky nuances of evaluating generated text [11, 12].

We perform experimental evaluations on the Visual7W dataset [8] and the
VQA dataset [5] to evaluate the quality of our baseline models. We: (1) study
and model the bias in the Visual7W Telling and VQA Multiple Choice datasets,
(2) measure the e↵ect of using visual features from di↵erent CNN architectures,
(3) explore the use of a LSTM as the system’s language model, and (4) study
transferability of our model between datasets.

Our best model outperforms the current state-of-the-art on the Visual7W
telling task with a performance of 65.8%, and competes surprisingly well with
the most complex systems proposed for the VQA dataset. Furthermore, our
models perform competitively even with missing information (that is, missing
images, missing questions, or both). Taken together, our results suggests that
the performance of current VQA systems is not significantly better than that of
systems designed to exploit dataset biases.

image features
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short text. This answer can either be selected from multiple pre-specified choices
or be generated by the system. As illustrated by the examples from the Visual7W
dataset [9] in Figure 1, VQA naturally combines computer vision with natural
language processing and reasoning, which makes it a good way to study progress
on the path from computer vision to more general artificially intelligent systems.

VQA seems to be a natural playground to develop approaches able to per-
form basic “reasoning” about an image. Recently, many studies have explored
this direction by adding simple memory or attention-based components to VQA
systems. While in theory, these approaches have the potential to perform sim-
ple reasoning, it is not clear if they do actually reason, or if they do so in a
human-comprehensible way. For example, Das et al. [10] recently reported that
“machine-generated attention maps are either negatively correlated with human
attention or have positive correlation worse than task-independent saliency”. In
this work, we also question the significance of the performance obtained by cur-
rent “reasoning”-based systems. In particular, this study sets out to answer a
simple question: are these systems better than baselines designed to solely cap-
ture the dataset bias of standard VQA datasets? We limit the scope of our study
to multiple-choice tasks, as this allows us to perform a more controlled study
that is not hampered by the tricky nuances of evaluating generated text [11, 12].

We perform experimental evaluations on the Visual7W dataset [8] and the
VQA dataset [5] to evaluate the quality of our baseline models. We: (1) study
and model the bias in the Visual7W Telling and VQA Multiple Choice datasets,
(2) measure the e↵ect of using visual features from di↵erent CNN architectures,
(3) explore the use of a LSTM as the system’s language model, and (4) study
transferability of our model between datasets.

Our best model outperforms the current state-of-the-art on the Visual7W
telling task with a performance of 65.8%, and competes surprisingly well with
the most complex systems proposed for the VQA dataset. Furthermore, our
models perform competitively even with missing information (that is, missing
images, missing questions, or both). Taken together, our results suggests that
the performance of current VQA systems is not significantly better than that of
systems designed to exploit dataset biases.

image features

what is the color 
of the jacket?

question features

LSTM

• Feed question through 
recurrent network 



• Feed image through 
convolutional network 
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• Feed question through 
recurrent network 
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Fig. 1. Four images with associated questions and answers from the Visual7W dataset.
Correct answers are typeset in green.

short text. This answer can either be selected from multiple pre-specified choices
or be generated by the system. As illustrated by the examples from the Visual7W
dataset [9] in Figure 1, VQA naturally combines computer vision with natural
language processing and reasoning, which makes it a good way to study progress
on the path from computer vision to more general artificially intelligent systems.

VQA seems to be a natural playground to develop approaches able to per-
form basic “reasoning” about an image. Recently, many studies have explored
this direction by adding simple memory or attention-based components to VQA
systems. While in theory, these approaches have the potential to perform sim-
ple reasoning, it is not clear if they do actually reason, or if they do so in a
human-comprehensible way. For example, Das et al. [10] recently reported that
“machine-generated attention maps are either negatively correlated with human
attention or have positive correlation worse than task-independent saliency”. In
this work, we also question the significance of the performance obtained by cur-
rent “reasoning”-based systems. In particular, this study sets out to answer a
simple question: are these systems better than baselines designed to solely cap-
ture the dataset bias of standard VQA datasets? We limit the scope of our study
to multiple-choice tasks, as this allows us to perform a more controlled study
that is not hampered by the tricky nuances of evaluating generated text [11, 12].

We perform experimental evaluations on the Visual7W dataset [8] and the
VQA dataset [5] to evaluate the quality of our baseline models. We: (1) study
and model the bias in the Visual7W Telling and VQA Multiple Choice datasets,
(2) measure the e↵ect of using visual features from di↵erent CNN architectures,
(3) explore the use of a LSTM as the system’s language model, and (4) study
transferability of our model between datasets.

Our best model outperforms the current state-of-the-art on the Visual7W
telling task with a performance of 65.8%, and competes surprisingly well with
the most complex systems proposed for the VQA dataset. Furthermore, our
models perform competitively even with missing information (that is, missing
images, missing questions, or both). Taken together, our results suggests that
the performance of current VQA systems is not significantly better than that of
systems designed to exploit dataset biases.

image features

what is the color 
of the jacket?

question features

LSTM

logistic regressor

• Apply multi-class 
logistic regressor to 
predict answer 



• Train on a collection of 
70K multiple-choice 
questions 

• Measure accuracy on 
40K held-out questions 

Visual Question 
Answering 
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Percentage of  
Correct Answers

Encode question with LSTM 
Encode image with conv. network 52.1%



Clever Hans

Clever Hans



• Take multiple-choice visual question  

• Throw away both image and question  

• Encode answer using word2vec features  

• Train binary classifier to predict whether or not 
answer is correct 

• Test time: Predict highest-scoring answer 

Are we building horses? 
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• Our simple baseline 
outperforms the  
state-of-the-art 

Visual Question 
Answering 
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Percentage of  
Correct Answers

Encode question with LSTM 
Encode image with conv. network 52.1%

Simple model 52.9%
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Percentage of  
Correct Answers

Encode question with LSTM 
Encode image with conv. network 52.1%

Simple model 52.9%

Simple model++ 67.1%

• Does looking at the 
image and question help? 
Sure. 



• Visual reasoning benchmark that 
cannot be solved by a "horse" 
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CLEVR: A Diagnostic Dataset for
Compositional Language and Elementary Visual Reasoning

Justin Johnson1,2⇤

Li Fei-Fei1
Bharath Hariharan2

C. Lawrence Zitnick2
Laurens van der Maaten2

Ross Girshick2

1Stanford University 2Facebook AI Research

Abstract

When building artificial intelligence systems that can
reason and answer questions about visual data, we need
diagnostic tests to analyze our progress and discover short-
comings. Existing benchmarks for visual question answer-
ing can help, but have strong biases that models can exploit
to correctly answer questions without reasoning. They also
conflate multiple sources of error, making it hard to pinpoint
model weaknesses. We present a diagnostic dataset that
tests a range of visual reasoning abilities. It contains mini-
mal biases and has detailed annotations describing the kind
of reasoning each question requires. We use this dataset to
analyze a variety of modern visual reasoning systems, pro-
viding novel insights into their abilities and limitations.

1. Introduction
A long-standing goal of artificial intelligence research

is to develop systems that can reason and answer ques-
tions about visual information. Recently, several datasets
have been introduced to study this problem [4, 10, 21, 26,
32, 46, 49]. Each of these Visual Question Answering
(VQA) datasets contains challenging natural language ques-
tions about images. Correctly answering these questions
requires perceptual abilities such as recognizing objects,
attributes, and spatial relationships as well as higher-level
skills such as counting, performing logical inference, mak-
ing comparisons, or leveraging commonsense world knowl-
edge [31]. Numerous methods have attacked these prob-
lems [2, 3, 9, 24, 44], but many show only marginal im-
provements over strong baselines [4, 16, 48]. Unfortunately,
our ability to understand the limitations of these methods is
impeded by the inherent complexity of the VQA task. Are
methods hampered by failures in recognition, poor reason-
ing, lack of commonsense knowledge, or something else?

The difficulty of understanding a system’s competences

⇤Work done during an internship at FAIR.

Q: Are there an equal number of large things and metal spheres?
Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?

Figure 1. A sample image and questions from CLEVR. Questions
test aspects of visual reasoning such as attribute identification,
counting, comparison, multiple attention, and logical operations.

is exemplified by Clever Hans, a 1900s era horse who ap-
peared to be able to answer arithmetic questions. Care-
ful observation revealed that Hans was correctly “answer-
ing” questions by reacting to cues read off his human ob-
servers [30]. Statistical learning systems, like those used
for VQA, may develop similar “cheating” approaches to
superficially “solve” tasks without learning the underlying
reasoning processes [35, 36]. For instance, a statistical
learner may correctly answer the question “What covers the
ground?” not because it understands the scene but because
biased datasets often ask questions about the ground when
it is snow-covered [1, 47]. How can we determine whether
a system is capable of sophisticated reasoning and not just
exploiting biases of the world, similar to Clever Hans?

In this paper we propose a diagnostic dataset for study-
ing the ability of VQA systems to perform visual reasoning.
We refer to this dataset as the Compositional Language and
Elementary Visual Reasoning diagnostics dataset (CLEVR;
pronounced as clever in homage to Hans). CLEVR contains
100k rendered images and about one million automatically-
generated questions, of which 853k are unique. It has chal-
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How do we develop better 
benchmarks for image captioning? 

Research question

• Image captioning systems are difficult to evaluate 
• We propose binary image selection as an alternative evaluation

Highlights

Hexiang Hu Ishan Misra
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• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?
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• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?

Image Captioning 
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A bunch of luggage sitting on top of a floor.

• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?

Image Captioning 
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A bunch of luggage sitting on top of a floor.

CIDEr-D: 55.96

• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?

Image Captioning 
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A pile of garbage sitting next to a trash can.

• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?

Image Captioning 
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A pile of garbage sitting next to a trash can.

CIDEr-D: 0.14

• Evaluating relevance of captions 
to images is very difficult 

• Does a captioning system really 
possess visual understanding?

Image Captioning 
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• Captioning scores correlate poorly with human evaluations of correctness:

Figure 4: Captioning scores vs. num-
ber of reference captions. Cap-
tions generated using the UpDown [4]
model. Scores are relative to their value
when using all five reference captions.

Figure 5: Correctness (left) and detailedness (right) of generated captions
as a function of their captioning scores. Captions were generated using the
UpDown [4] captioning system. Correctness and detailedness of the generated
captions were rated on a Likert scale (from 1 to 5) by human annotators. The
average correctness and detailedness scores are 3.266 and 2.203, respectively.

ing systems: the reference captions do not capture all visual
content and all the different ways in which that content can
be described [11, 40]. This leads captioning measures to
reward systems for generating very generic captions.

Effect of the number of reference captions. To as-
sess the robustness of automatic captioning evaluations, we
measured captioning scores using reference-caption sets of
varying size. To construct these reference-caption sets, we
selected captions uniformly at random (without replace-
ment) from the five reference captions provided for each
image in the COCO captions dataset.

Figure 4 shows the value of each captioning score rela-
tive to the value of that score evaluated using all five ref-
erence captions (right-most point). We show this value as
a function of the cardinality of the reference caption sub-
set. The results presented in the figure show that three
out of four captioning measures are sensitive to the num-
ber of reference captions that the caption dataset provides.
BLEU-4 appears to be the most sensitive measure: whilst
using all five reference captions leads to a BLEU-4 score of
34.58, using a single reference caption reduces the BLEU-
4 score to just 10.69 (see supplementary material for other
measures). In contrast to all other evaluation measures, the
SPICE score decreases with more reference captions.

4. The COCO-BISON Dataset

Motivated by the analysis of captioning measures above,
we develop binary image selection (BISON) with the aim of
providing a robust, auxiliary evaluation of visual grounding
that rewards systems for generating detailed, discriminative
captions. To do so, we collect BISON annotations on top of
validation split of the COCO captions dataset [12].

4.1. Collection of BISON Annotations
Figure 2 illustrates our collection of binary image selec-

tion annotations that comprises the following three stages.
1. Collect pairs of semantically similar images. We
construct a semantic representation for each image in the
COCO validation set by averaging word embeddings (ob-
tained using FastText [25]) of all the words in all captions
associated with the image. We use these representations to
find the semantically most similar image for each “target”
image in the dataset via nearest neighbor search. We refer to
the nearest neighbor of a target image as the “decoy” image.
2. Identify captions that distinguish targets and decoys.
We present human annotators with an interface3 that shows:
(1) a target image, (2) the corresponding decoy image, and
(3) the five captions associated with the target image in the
COCO captions dataset. We ask the annotators to select a
caption from the set of five that describes the target image
but not the decoy image, or to select “none of the above”
if no discriminative caption exists. Unless annotators se-
lect the latter option, each of their annotations produces a
caption-target-decoy triple. We discard all image pairs for
which annotators indicated no discriminative caption exists.
3. Verify correctness of the caption-target-decoy triples.
To ensure the validity of each caption-target-decoy triple,
we presented a different set of human annotators with trials
that contained the target and decoy images and the caption
selected in stage 2. We asked the annotators whether the se-
lected caption describes: (1) the target image, (2) the decoy
image, (3) both images, or (4) neither of the images. Each
verification trial was performed by two annotators; we only
accepted the corresponding BISON example if both anno-
tators correctly selected the target image given the caption.

The caption-target-decoy triples thus collected form bi-
nary image selection (BISON) examples, two of which

3Screenshots of the annotation interface in the supplementary material.

* Annotations gathered using COCO guidelines for human evaluation.
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• Is text-based image retrieval a 
good alternative? 

• No: does not provide true 
negatives.

Text query: A person wearing a banana headdress and necklace.

Retrieved image Correct image

Text query: There is a green clock in the street.

Retrieved image Correct image
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• Given a text query, pick one of 
two images 

• BISON is designed such that 
both images are similar, but one 
is a negative for the query 

Text query: Plates filled with carrots and beets on a white table.

Text query: Yellow shirted tennis player looking for incoming ball.

Negative image Positive image

Positive image Negative image
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• Performance of 
captioning and 
retrieval systems 
on COCO-val

BLEU-4 CIDEr-D Recall@1 BISON

Show & Tell (Vinyals et al., 2015) 32.35 97.20 - 78.59
Show & Tell + Attention (Xu et al., 2015) 33.49 101.55 - 82.04
UpDown (Anderson et al., 2018) 34.53 105.40 - 84.04
Convnet + BoW - - 45.19 81.48
Convnet + BiGRU (Faghri et al., 2018) - - 49.34 85.46
SCAN i2t (Lee et al., 2018) - - 52.35 86.40
SCAN t2i (Lee et al., 2018) - - 54.10 87.50
Human 21.70* 85.40* - 100.0

* Human scores computed on COCO test set.
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COCO-validation COCO-BISON

Try it yourself at http://github.com/facebookresearch/binary-image-selection



How do we move beyond image 
understanding to physical reasoning? 

Research question

• PHYRE is a new benchmark for physical reasoning
Highlights

Ross Girshick Justin JohnsonLaura GustafsonAnton Bakhtin
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• New benchmark for test ability of AI agent to perform physical reasoning: 



• Overview of the stages in the PHYRE benchmark: 

PHYRE 

69



• Solution strategies the agent needs to use are very diverse:

PHYRE 

70



71http://www.phyre.ai
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• Tasks cannot be solved well by 
random search 
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(a) Percentage of tasks solved by a random agent
(y-axis) as a function of the number of attempts
(x-axis; log scale) for both PHYRE tiers.

(b) Probability (y-axis; log scale) that a random
attempt solves each of the 25 task templates (x-
axis) in a tier for both PHYRE tiers.

Figure 2: PHYRE complexity analysis. Values are averaged over 10 runs over all tasks in the tier;
error bars indicate one standard deviation. Two-ball tasks are much harder to solve by chance than
single ball tasks. Each tier contains a spectrum of task difficulty with respect to random guessing.

main ways: (1) it has an offline training phase that precedes the online learning testing phase and
(2) the agent receives privileged information [51] in addition to the binary reward signal, viz., it has
access to observations of intermediate world states produced by the simulator on previous attempts.

In the training phase, the agent has access to the training tasks and unlimited access to the simulator.
The agent does not have access to task solutions, but can use the simulator to train models that can
solve tasks. Such models may include forward-prediction or action-prediction models.

In the testing phase, the agent receives test tasks that it needs to solve in as few attempts (queries to
the simulator) as possible. After each attempt, the agent receives a binary reward and observations of
intermediate world states. The agent can use this information to refine its action for the next attempt.
Some actions may be invalid, i.e., correspond to an object that overlaps with other objects. In such
cases, we neither give the agent any reward nor count this attempt toward the query budget. The
agent receives access to all test tasks at once, allowing it to choose the order in which it solves tasks.

Performance measure. We judge an agent’s performance by how efficiently it solves tasks in the
testing phase. We characterize efficiency in terms of the number of actions that were attempted to
solve a given task; fewer attempts corresponds to greater efficiency. We formalize this intuition by
recording the cumulative percentage of test tasks that were solved (the success percentage) as a
function of the number of attempts taken per task. To compare the performance of agents on PHYRE,
we plot this success-percentage curve. We also compute a performance measure, called AUCCESS,
that aggregates the success percentages in the curve via a weighted average. To place more emphasis
on solving tasks with fewer attempts, we consider the range of attempts k2 {1, . . . , 100} and use
weights wk = log(k + 1)� log(k), yielding AUCCESS =

P
k wk · sk/

P
k wk, where sk is the

success percentage at k attempts. The relative weight of the first 10 attempts in the AUCCESS
measure is ⇠0.5: agents that need more than 10 attempts cannot get an AUCCESS score of more than
50%. This encourages the development of sample-efficient agents. AUCCESS is equivalent to the
area under the success-percentage curve formed by replacing the discrete samples with a piecewise
constant function and placing the number of attempts on a log scale.

3.3 Analysis

To assess the difficulty of the tasks in both PHYRE tiers, we measured what percentage of PHYRE
tasks can be solved by an agent that randomly samples actions from the action space. Figure 2a shows
the percentage of tasks (y-axis) that this random agent solves in at most k attempts (x-axis), averaged
over 10 runs on all PHYRE tasks. The figure reveals that tasks vary greatly in difficulty level: a few
tasks can be solved by a random agent in just a few attempts, whereas other tasks require thousands
of attempts to be solved. The figure also shows that tasks in the PHYRE-B tier are, on average, harder
than those in PHYRE-2B because the action space in that tier has more degrees of freedom.

We designed the PHYRE tasks such that, on average, it takes a random agent no more than 10,000
attempts to solve task in the PHYRE-B tier and no more than 100,000 attempts to solve a task in the
PHYRE-2B tier. Figure 2b illustrates this by displaying the average probability that a random attempt

4
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Figure 4: AUCCESS as a function of the number of actions being ranked by the agent for the
RANDOM, MEM, and DQN agents and for an agent that is OPTIMAL in terms of scoring attempts.

Figure 5: AUCCESS of MEM-O and DQN-O agents as the “aggressiveness” of the online update is
varied during the testing phase. The left-most point in each plot is an offline version of the agent.

5 Discussion and Future Work

PHYRE aims to enable the development of physical reasoning algorithms with strong generalization
properties mirroring those of humans [30]. Yet the baseline methods studied in this work are far from
this goal, demonstrating limited generalization abilities. We foresee several areas for advancement:

• Agents should use intermediate observations from the simulator following an (unsuccessful) attempt
to refine their next attempt. Our current failure to do so makes the agents sample-inefficient, as
these observations contain rich information on the specific task that the agent is solving that should
be used effectively for efficient problem-solving. Doing so requires counterfactual reasoning:
agents need to reason about what would happen upon a particular change to a previous attempt.

• Agents should use a forward-prediction model that mimics the simulator by a learnable func-
tion [15]. Such a model can be integrated into a DQN by running attempts through it for a number
of time steps, and using the resulting state predictions as additional inputs into the Q-network.

• Agents should explicitly diversify attempts when solving a task.
• Agents should use an active strategy at test time, e.g., by starting with solving simple tasks.
• While each task is different from the others, they share the same underlying causal model (physics).

Methods aimed at invariant causal prediction (ICP) [14, 38] may be well-suited for PHYRE.

Based on these observations, we expect to witness rapid progress on the PHYRE benchmark. To this
point, we highlight that PHYRE is an extensible platform upon which more challenging puzzle tiers
may be built. The two tiers provided in this initial benchmark are designed to be approachable, yet
challenging. Future tiers may involve substantially larger and more complex action spaces.

We also foresee approaches that implement a simulator “internal” to the agent and then query it
to brute-force a solution before submitting any attempts to the real simulator. Based on initial
experiments, we expect that training a neural network to exactly mimic the simulator will be difficult.
However, one might instead use hand-coded rules specific to PHYRE—in the extreme, one could
simply call the real simulator inside the agent. We view such approaches as violating the spirit of the
benchmark. We discourage this line of attack as well as in-between solutions that combine function
approximation with extensive hand-coded inductive biases that are specific to PHYRE.

8
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• Agents are still far away from doing optimal ranking (which is non-optimal itself): 
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Visual recognition works but we still have 
a way to go towards visual understanding. 

Conclusion

• Large-scale training of modern convolutional networks works great 
• Care is needed to prevent networks from having undesired biases 
• Visual understanding is still difficult and work-in-progress

Details



Thank you!


