From Visual Recognition
To Visual Understanding
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“Advancing the state-of-the-art in
Al through open research for the

benefit of all”

Values

« Openness: Publish and open-source

- Freedom: Researchers have complete control on their agenda
- Collaboration: With internal and external partners

- Excellence: Focus on most impactful projects
- Scale: Operate at large scale













Translation

50%

of users have at least one friend
with a different native language

~6B

translated posts every day
on Facebook
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From Visual Recognition...
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Data

Ingredients

- Three main ingredients
came together in
recent years

Models Computation
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Pretraining
Vision Models

- First, train a model on a
large “source” dataset
(say, ImageNet)
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Pretraining
Vision Models

- First, train a model on a
large “source” dataset
(say, ImageNet)

- Finetune on a small
“target” dataset

- Measure accuracy on
target task
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. \ | Research question

Can we use large amounts of weakly
supervised images for pretraining?

Highlights

- We pretrain models by predicting relevant hashtags for images
- We pretrain models to predict 17.5K hashtags for 3.5B images
- After finetuning, we beat the state-of-the-art on, e.g,, ImageNet
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Dhruv Mahajan Ross Girshick  Vignesh Ramanathan Kaiming He Manohar Paluri Yixuan Li Ashwin Bharambe



Hashtag Supervision

- It is easy to get billions of public images and
hashtags

- Hashtags are more structured than captions

- Hashtags were often assigned to make images
“searchable”

facebook
Artificial Intelligence Research

#cheesecake #birthday



Hashtag Supervision

But hashtags are not perfect supervision
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Hashtag Supervision

But hashtags are not perfect supervision

- Some hashtags are not visually relevant
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Hashtag Supervision

- But hashtags are not perfect supervision
- Some hashtags are not visually relevant

- Other hashtags are not in the photo
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Hashtag Supervision

- But hashtags are not perfect supervision
- Some hashtags are not visually relevant

- Other hashtags are not in the photo

- And there are many false negatives
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Hashtag Supervision

- But hashtags are not perfect supervision
- Some hashtags are not visually relevant

- Other hashtags are not in the photo

- And there are many false negatives

- Is scaling up sufficient to make up for this noise?
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Experiments

- Select a set of hashtags

- Download all public Instagram images that has
at least one of these hashtags

- Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)
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Experiments

- Select a set of hashtags

- Download all public Instagram images that has
at least one of these hashtags

- Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and

#ursusarctos)

- The final list has 17,517 hashtags
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Experiments

- Select a set of hashtags

- Download all public Instagram images that has
at least one of these hashtags

- Use WordNet synsets to merge hashtags into
canonical form (merge #brownbear and
#ursusarctos)

- The final image set has ~3.5B images
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| cannot show you the images, but you can look...

https://www.instagram.com/explore/tags/brownbear/

https://www.instagram.com/explore/tags/crane/

https://www.instagram.com/explore/tags/...
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Experiments

- Train ResNeXt-32xCd convolutional networks
- Use c-of-K vector to represent multiple labels

- Train to minimize multi-class logistic loss
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Experiments

- Train ResNeXt-32xCd convolutional networks 4 256-din
4/;/\
- Use c-of-K vector to represent multiple labels 256, 1x1, 4 256, 1X1,4 | tota132 | 226, 1x1, 4
v L2 paths 2
- Train to minimize multi-class logistic loss 4, 3x3, 4 43x3,4 | 4334
£ v v
4,1x1, 256 4, 1x1, 256 4, 1x1, 256

most experiments use ResNeXt-101 32x16d
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Fix Model;
Vary Data

Pretrain model on
ImageNet or Instagram

Finetune on ImageNet
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Models available in PyTorch Hub!

ImageNet top-1 accuracy (in %)
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Instagram (1B, 17k tags)
Instagram (3.5B, 17k tags)
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Number of classes

5,000

9,000

in target task (ImageNet)
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Fix Model;
Vary Data

Pretrain model on
ImageNet or Instagram

Finetune on ImageNet

"standard" ImageNet
training
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Models available in PyTorch Hub!

cy (in %)
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Fix Model;

Vary Data
« Pretrain model on
ImageNet or Instagram
=
i £
- Finetune on ImageNet z

(%)

©

L] L] Hl
pre-training on 1B 2
Instagram images, o
selected to match 2
ImageNet classes g
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Models available in PyTorch Hub!

90

80

Target task: ImageNet

y

84.2 g3 4 83.684.2

T T T

Source task
ImageNe arget = source
Bmm |Instagram (1B, 8.5k tags)
mmm Instagram (1B, 17k tags)
B Instagram (3.5B, 17k tags)

1,000 5,000 9,000
Number of classes in target task (ImageNet)
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Fix Model;
Vary Data

. Pretrain model on

90
ImageNet or Instagram
S
_ £ 80
- Finetune on ImageNet =
o
e
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Models available in PyTorch Hub!
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Fix Model;
Vary Data

Pretrain model on
ImageNet or Instagram

Finetune on ImageNet

- Similar results on larger
versions of ImageNet
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Models available in PyTorch Hub!

ImageNet top-1 accuracy (in %)
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mmm Instagram (1B, 17k tags)
B Instagram (3.5B, 17k tags)
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Fix Data;
Vary Model

Increasing model capacity
has a larger positive effect

- Even lower error rates
may be possible?
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ImageNet top-1 accuracy (in %)
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Model capacity (number of mult-add operations)

30



Fix Data;
Vary Model

Increasing model capacity
has a larger positive effect

- Even lower error rates
may be possible?
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88

(o0} (00} (oe] (00]
o N = ()}

ImageNet top-1 accuracy (in %)

~
0]

best result: 85.4% top-1 accuracy

Model capacity (number of mult-add operations)
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Learning Curves

- Accuracy on target task
improves (almost) log-
linearly with data size

- Matching hashtags to
target task may help
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ImageNet top-1 accuracy (in %)

ImageNet top-1 accuracy (in %)
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Target task: ImageNet-9K

Number of training images in source task (Instagram)
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Research question

Does image recognition work
for everyone?

Highlights

- We test cloud services for image recognition on household items
- Images used for test come from across the world

- Services work better in some countries than others

Terrance DeVries Changhan Wang Ishan Misra
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Image
Classification

- Is image classification solved?
Yes?

facebook
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Soap

Country of Origin: UK
Prediction: Toiletry

Spices

Country of Origin: USA
Prediction: Spice

Toothpaste

Country of Origin: USA
Prediction: Toothpaste

34



Soap Spices Toothpaste
Image
Classification

- Is image classification solved?
Yes? No!

Country of Origin: UK Country of Origin: USA Country of Origin: USA
Prediction: Toiletry Prediction: Spice Prediction: Toothpaste

facebook W - . - W
Avrtificial Intelligence Research Country of Origin: Nepal Country of Origin: Philippines Country of Origin: Burundi 35
Prediction: Food Prediction: Beer Prediction: Wood




Dollar Street

¥ Toilets ~ in the World ~ by income engish v =

POOREST

Photo collection gathered
by Gapminder to show how
people across the world live

Photos are annotated with
object class, country, and
family income

$90&=»- y $10 098

Sri Lanka China

- We used ~20,000 photos
from 117 classes

$62 , % |s00%
Philippines i “+ § Ukraine

https:;//www.gapminder.org/dollar-street
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Results

90

- Average top-5 accuracy of all
image recognition systems: .
- Amazon Rekognition
- Google Cloud Vision
- Clarifai
Microsoft Azure

[BM Watson

r 80

r75

r70

- Accuracy varies per country

65

- Results are consistent across all ®
services analyzed Red: 60%; Yellow: 75%; Green: 90%
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Results
1.0

- Average top-5 accuracy of all
image recognition systems:

- Amazon Rekognition
- Google Cloud Vision
- Clarifai

- Microsoft Azure

- IBM Watson

Accuracy

- Accuracy varies per country

- Results are consistent across all
services analyzed

0.5
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Top-5 Accuracy by Income

- Average Top-5 Accuracy

5 A A0 > > o

IQ IQ) IQ A
SR ARy

Income (in USD per month)
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Results

- Analysis of only India shows this
is not only due to income
correlating with location
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Top-5 Accuracy by Income

1.0

o
o

o
~

Accuracy

o
o

- Average Top-5 Accuracy

0-5 ; I I T T
D 9 N X 5 Q © O O ~
© 7 N QT A9 H° 00 oM Vv
A 2 IO M MPANIPNG) a2 ,,;\ vo
Income (in USD per month)
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Main problems

- Dataset collection relies on
services that are primarily
popular in the West

facebook
Artificial Intelligence Research
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Main problems

- Dataset collection relies on
services that are primarily
popular in the West

- Most dataset collections start
with English queries
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Top results for “Wedding”

W i

Top results for “2M&” (Wedding in Hindi)
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Main problems

- Dataset collection relies on
services that are primarily
popular in the West

- Most dataset collections start
with English queries
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Top results for “Wedding”

RS

Top results for “2M&” (Wedding in Hindi)

e s

T (Spices

: ’ '
A
{ —

in Hindi)
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.. to Visual Understanding




. \ | Research question

How do we measure image understanding?

Highlights
- We find problems in common benchmarks for visual understanding

facebook
Artificial Intelligence Research

Allan Jabri  Armand Joulin



Visual Question
Answering

- How do we measure
understanding?

facebook
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Visual Question
Answering

How do we measure
understanding?

- Proposal:
Given an image,

answer questions
about that image

facebook
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What color
jacket?

-Red and blue.
-Yellow.
-Black.
-Orange.

is

How many cars are
parked?

-Four.

-Three.

-Five.

-Six.

What event is this?

-A wedding.
-Graduation.
-A funeral.
-A picnic.

When is this scene
taking place?

-Day time.

-Night time.
-Evening. a6
-Morning.



Models for VQA

image features
- Feed image through

convolutional network

facebook

Artificial Intelligence Research 47




Models for VQA

image features
- Feed image through

question features

convolutional network

- Feed question through
recurrent network

what is the color
of the jacket?
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logistic regressor

image features

Models for VQA

question features

- Feed image through
convolutional network

- Feed question through
recurrent network

- Apply multi-class
logistic regressor to
predict answer

what is the color
of the jacket?

facebook
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Visual Questlon Percentage of
Answering

Correct Answers

- Train on a collection of

70K multiple-choice Encode question with LSTM
questions Encode image with conv. network

- Measure accuracy on
40K held-out questions
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Are we building horses?

- Take multiple-choice visual question
- Throw away both image and question
- Encode answer using word2vec features

- Train binary classifier to predict whether or not
answer is correct

- Test time: Predict highest-scoring answer

facebook
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Visual Question
Answering

- Our simple baseline
outperforms the
state-of-the-art

facebook
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Encode question with LSTM
Encode image with conv. network

Simple model

Percentage of
Correct Answers
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Visual Question
Answering

- Does looking at the
image and question help?
Sure.

facebook
Artificial Intelligence Research

Encode question with LSTM
Encode image with conv. network

Simple model

Simple model++

Percentage of
Correct Answers
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CLEVR

- Visual reasoning benchmark that
cannot be solved by a “horse”

Q: Are there an equal number of large things and metal spheres?

Q: What size is the cylinder that is left of the brown metal thing that
is left of the big sphere? Q: There is a sphere with the same size as the
metal cube; is it made of the same material as the small red sphere?
Q: How many objects are either small cylinders or metal things?
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Research question

How do we develop better
benchmarks for image captioning?

Highlights

- Image captioning systems are difficult to evaluate

- We propose binary image selection as an alternative evaluation

Hexiang Hu Ishan Misra



Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?

facebook
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Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?
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Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?
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A bunch of luggage sitting on top of a floor.
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Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?
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A bunch of luggage sitting on top of a floor.
CIDEr-D: 55.96
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Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?
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A pile of garbage sitting next to a trash can.
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Image Captioning

- Evaluating relevance of captions
to images is very difficult

- Does a captioning system really
possess visual understanding?
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A pile of garbage sitting next to a trash can.

CIDEr-D: 0.14
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Image Captioning

- Captioning scores correlate poorly with human evaluations of correctness:
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w kWU
w o wu o

Correctness (on Likert scale)
!\) w
Ul o

Measures

BLEU-4

2.0+ =0 CIDEr
—e— SPICE

10 T T T T T T T T
0.0 01 02 03 04 05 06 0.7 08 0.9
Normalized caption measure scores

* Annotations gathered using COCO guidelines for human evaluation.
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Image Retrieval

- Is text-based image retrieval a
good alternative?

- No: does not provide true
negatives.
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Retrieved image

PIED BULL YARD

-------

Correct image
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BISON: Binary Image SelectiON

- Given a text query, pick one of
two images

BISON is designed such that
both images are similar, but one
is a negative for the query

facebook
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Text query: Plates filled with carrots and beets on a white table.
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Analyzing Systems

COCO-validation COCO-BISON

+ Performance of BLEU-4 CIDEr-D Recall@1 BISON
captioning and

retrieval systems Bl Show & Tell (vinyals et al, 2015) 32.35 97.20 - 78.59

on COCO-val B Show & Tell + Attention (xu etat, 2015 [CCYIRRINNGS - 82.04

§ UpDown (Anderson et al., 2018) 34.53 105.40 - 84.04

Convnet + BoW - - 4519 81.48

T‘%’ Convnet + BiGRU (Faghri et al., 2018) - - 49.34 85.46

ol SCAN i2t (Lee et al., 2018) - - 52.35 86.40

- SCAN t2i (Lee et al.,, 2018) - - 54.10 87.50

Human 21.70* 85.40* - 100.0

* Human scores computed on COCO test set.

facebook
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. \ | Research question

How do we move beyond image
understanding to physical reasoning?

Highlights
« PHYRE is a new benchmark for physical reasoning

facebook
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Anton Bakhtin Laura Gustafson Ross Girshick Justin Johnson



= PHYRE

- New benchmark for test ability of Al agent to perform physical reasoning:

facebook
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= PHYRE

- Overview of the stages in the PHYRE benchmark:

Make the green ball touch the purple jar by adding a red ball

facebook
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Initial scene

Initial scene

Initial scene
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= PHYRE

- Solution strategies the agent needs to use are very diverse:

Make the green ball touch the blue/purple object by adding red objects

222,

facebook
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PHYRE-B Tier PHYRE-2B Tier

. o
CRNIRE / - 1 — __
' \/_ B _
L N —— . -
! — \ &
) 2 N \ ./:_h_ e ——— & 1
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= PHYRE

- Tasks cannot be solved well by
random search
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= PHYRE

- Agents are still far away from doing optimal ranking (which is non-optimal itself):

PHYRE-B (cross)

PHYRE-B (within) PHYRE-2B (cross)

PHYRE-2B (within)

®
.
4
'S -9
7 //
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e
o
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o
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2
o=zzzzzffozeae *----- ------ ®

100 JPPTe aua * BP i - »
& oo P
% / J - ¥
8 /7 s //
S| Aty | _—
< ;,:’/—5 ————— . e d s
N 4 i SR SR S e Cre e e
10! 102 103 104 10° 10! 102 103 104 105 10! 102 103 104 103
Number of actions ranked
--—-o--- RAND . MEM —--e--- DQN ---o---
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Conclusion

Visual recognition works but we still have
a way to go towards visual understanding.

Details

- Large-scale training of modern convolutional networks works great
- Care is needed to prevent networks from having undesired biases

- Visual understanding is still difficult and work-in-progress
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Thank you!



