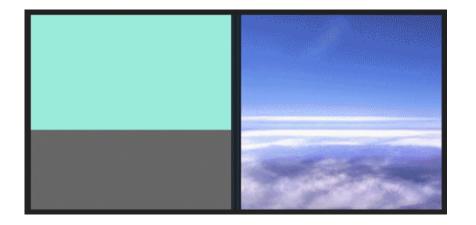
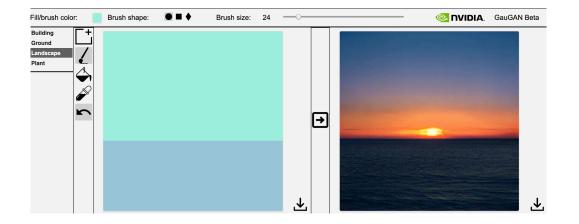
# DERIN OGRENMEYLE RESIM SENTEZLEME

Aysegul Dundar

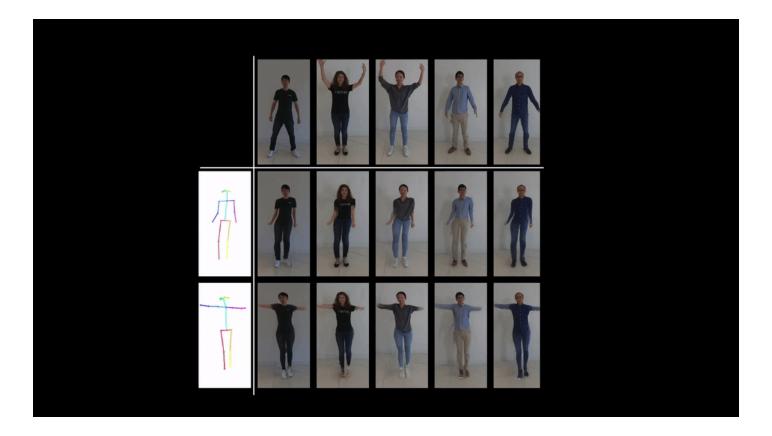
## **IMAGE SYNTHESIS**





Demo: <u>https://www.nvidia.com/en-us/research/ai-playground/</u>

## VIDEO SYNTHESIS



## **VIDEO SYNTHESIS**

#### Painting Examples



Example image







Input videos Synthesized results

Input videos Synthesized results

Demo: <u>https://github.com/NVlabs/few-shot-vid2vid/</u> Aysegul Dundar

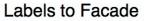
# IMAGE INPAINTING

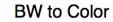


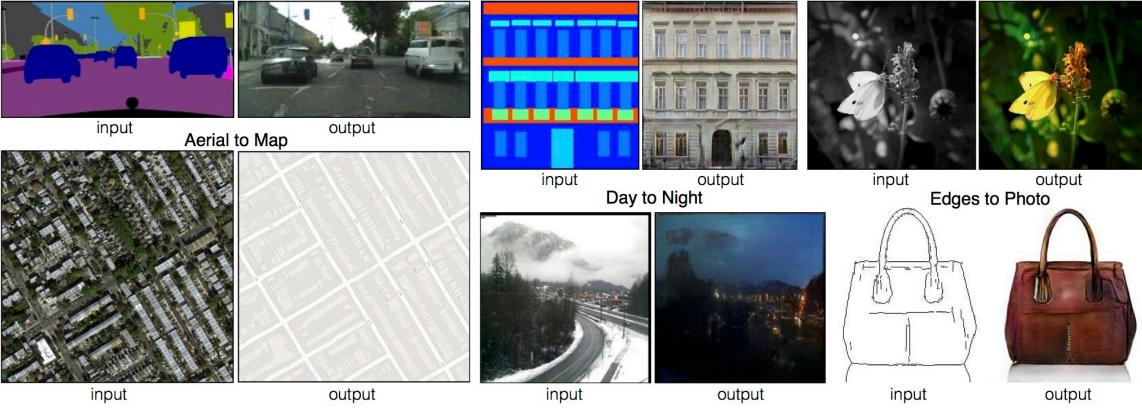
Demo: <a href="https://www.nvidia.com/research/inpainting/">https://www.nvidia.com/research/inpainting/</a>

## **IMAGE SYNTHESIS**

Labels to Street Scene







Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR. 2017. Aysegul Dundar

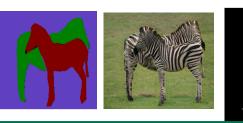
• GAN and image synthesis



• GAN and image synthesis



• Conditional image synthesis







• GAN and image synthesis



• Conditional image synthesis

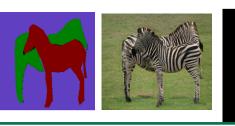






Image inpainting



#### • GAN and image synthesis



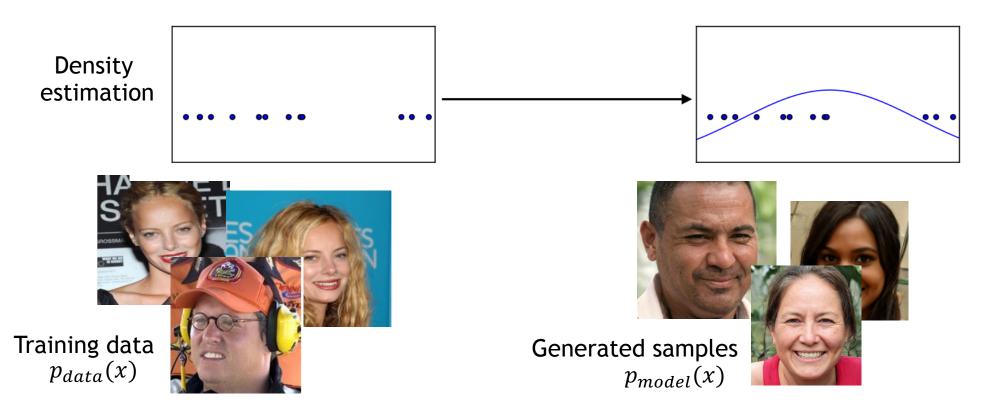
Conditional image synthesis







## **GENERATIVE MODELS**



Top figure: Goodfellow, NIPS 2016 Tutorial: Generative Adversarial Networks Dataset: <a href="http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html">http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html</a> Generated faces by: <a href="https://github.com/NVlabs/stylegan">https://github.com/NVlabs/stylegan</a>

## MANIFOLD ASSUMPTION

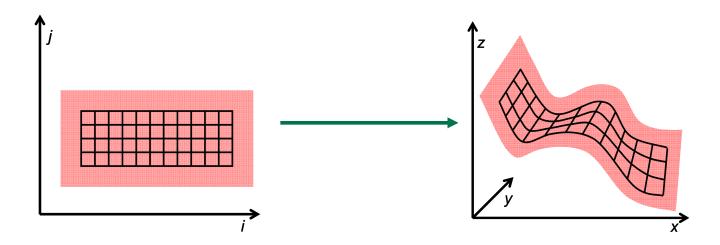
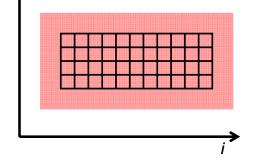
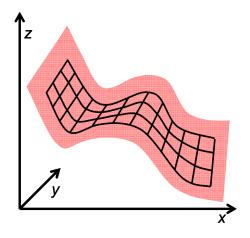


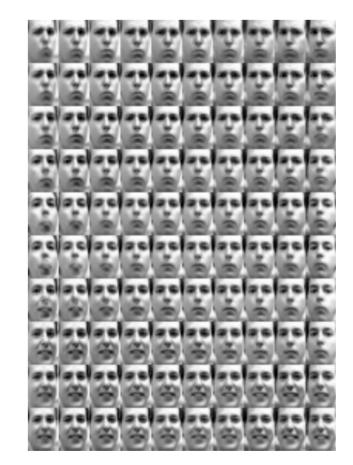
Figure credit: Ward, Aaron D., and Ghassan Hamarneh. "3D surface parameterization using manifold learning for medial shape representation." Medical Imaging 2007: Image Processing. Vol. 6512. International Society for Optics and Photonics, 2007.

Ming-Yu Liu, CVPR 2017 Tutorial: Theory and Applications of Generative Adversarial Networks

### MANIFOLD ASSUMPTION







Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." ICLR (2014).

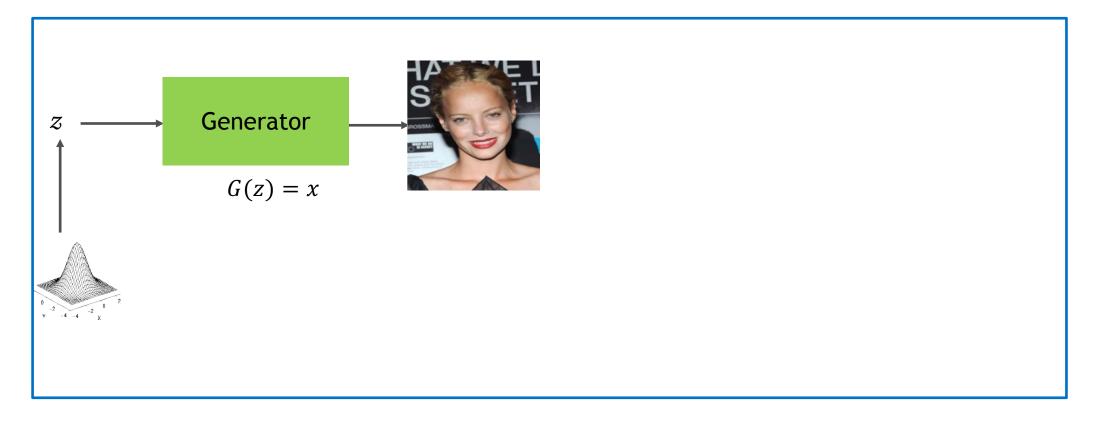
# **GENERATIVE MODELS**

- Generative Adversarial Networks
- Variational Auto Encoders
- Flow-based Generative Model
- Pixel RNN / Pixel CNN
- Hidden Markov Model
- Gaussian Mixture Model
- ....

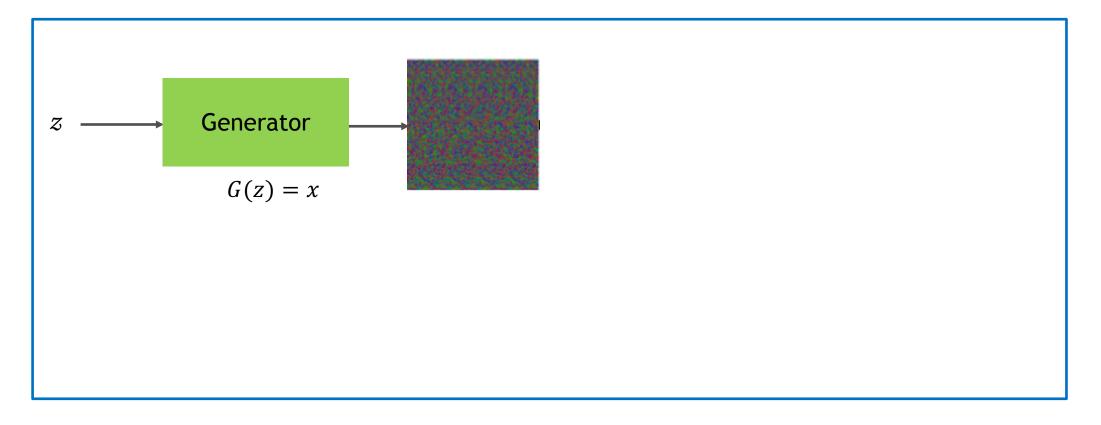
# **GENERATIVE MODELS**

#### - Generative Adversarial Networks

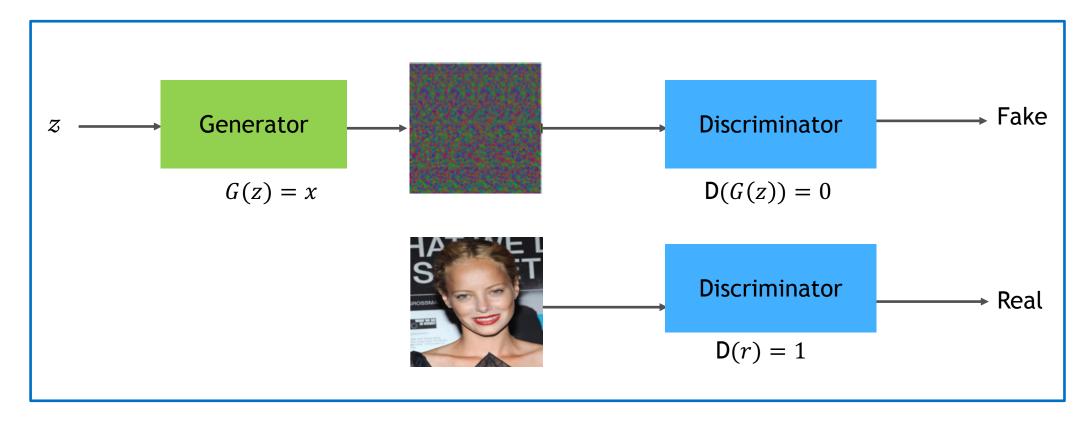
- Variational Auto Encoders
- Flow-based Generative Model
- Pixel RNN / Pixel CNN
- Hidden Markov Model
- Gaussian Mixture Model
- ....



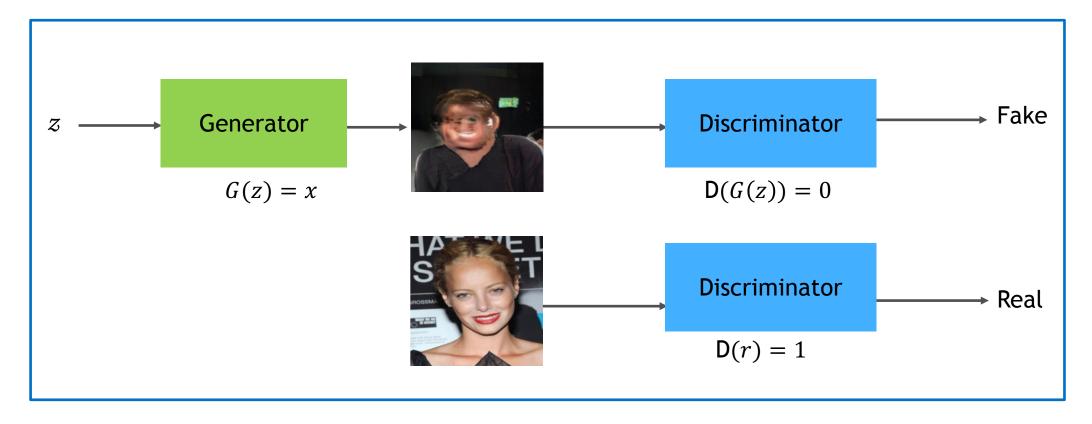
Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.



Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.

## **OBJECTIVE FUNCTION**

Train jointly in minimax game

$$\min_{G} \max_{D} \quad E_{x \sim p_X} \left[ \log D(x) \right] + E_{z \sim p_Z} \left[ \log(1 - D(G(z))) \right]$$

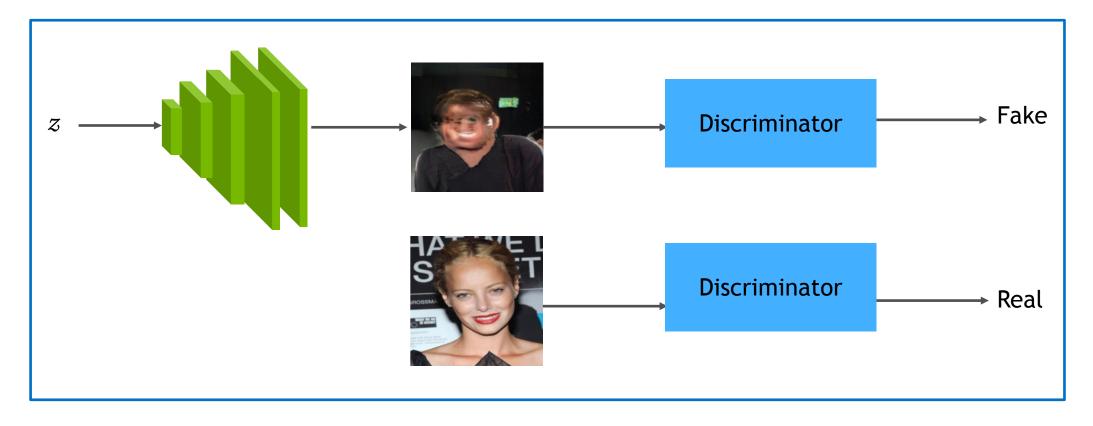
## **OBJECTIVE FUNCTION**

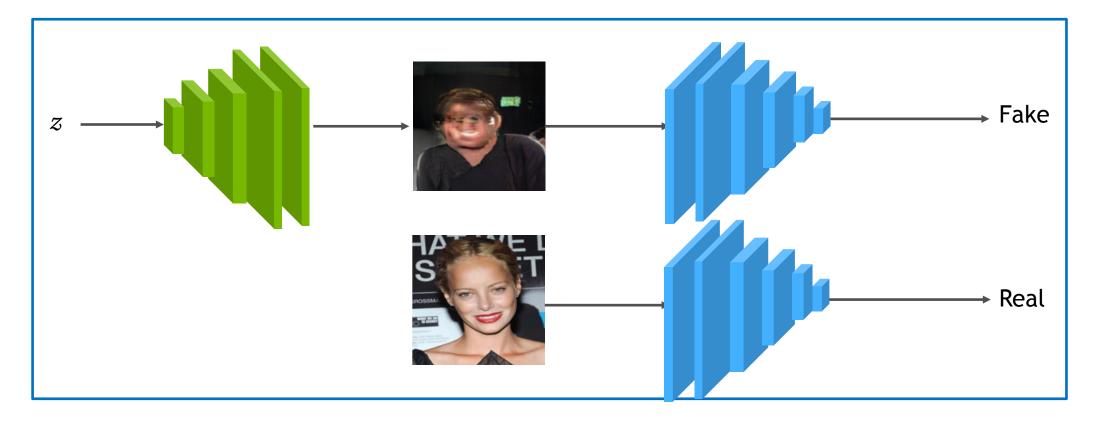
Train jointly in minimax game

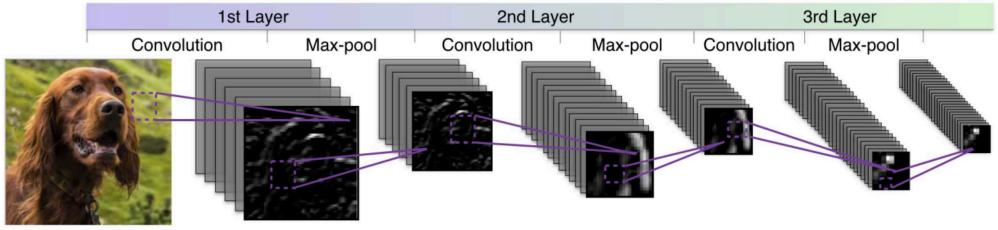
$$\min_{G} \max_{D} \quad E_{x \sim p_X} [\log D(x)] + E_{z \sim p_Z} [\log(1 - D(G(z))]$$
real data fake data

Discriminator maximize objective ->  $D(x) \sim 1$  and  $D(G(z)) \sim 0$ Generator minimize objective  $D(G(z)) \sim 1$ 

Goodfellow, Ian, et al. "Generative adversarial nets." Advances in neural information processing systems. 2014.







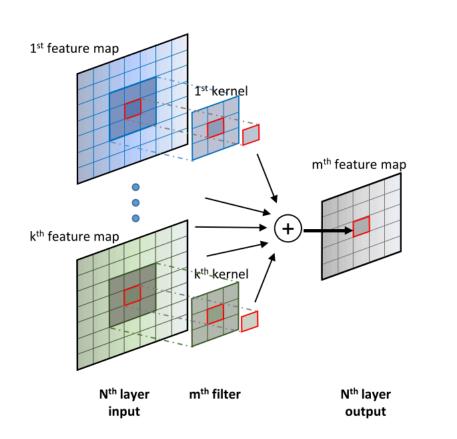
input image

Inspired by Hubel & Wiesel 1962

- 1) Simple cells (convolution layer) = Detect local features
- 2) Complex cells (pooling layer) = Pool outputs from neighboring locations

LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." *Neural computation*, 1989.

## **CONVOLUTION OPERATION**



|     | Input Image |     |     |    |  |
|-----|-------------|-----|-----|----|--|
| 252 | 251         | 246 | 207 | 90 |  |
| 250 | 242         | 236 | 144 | 41 |  |
| 252 | 244         | 228 | 102 | 43 |  |
| 250 | 243         | 214 | 59  | 52 |  |
| 248 | 243         | 201 | 44  | 54 |  |

-1

-1

-1

Х

Kernel

0

0

0

1

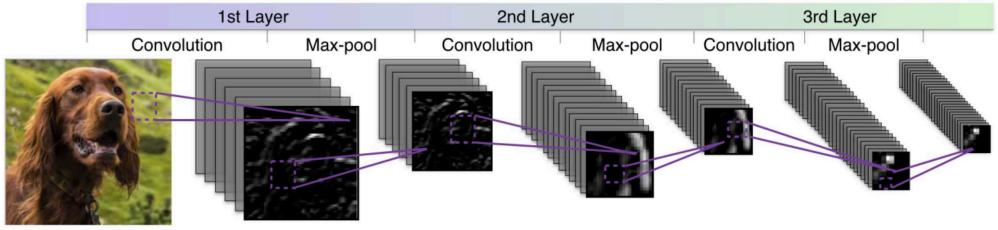
1

1

Feature map

https://towardsdatascience.com/visualizing-the-fundamentals-of-convolutional-neural-networks-6021e5b07f69

Receptive field

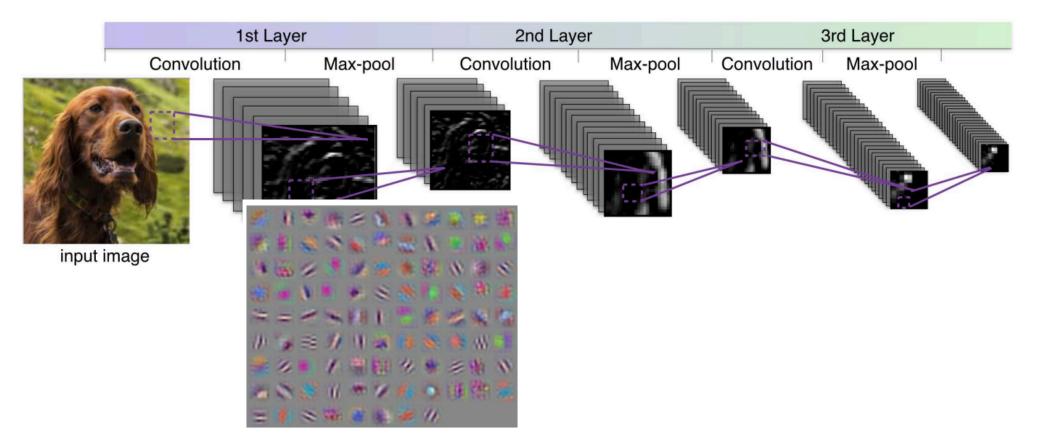


input image

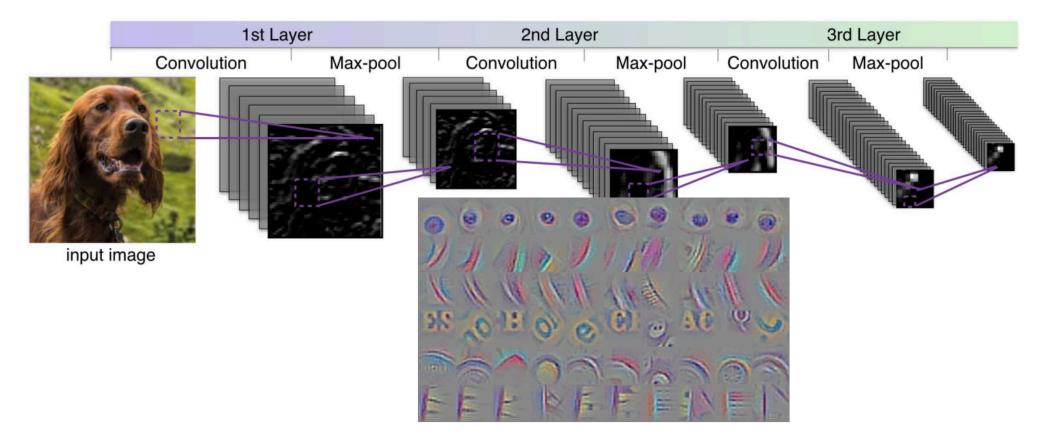
Inspired by Hubel & Wiesel 1962

- 1) Simple cells (convolution layer) = Detect local features
- 2) Complex cells (pooling layer) = Pool outputs from neighboring locations

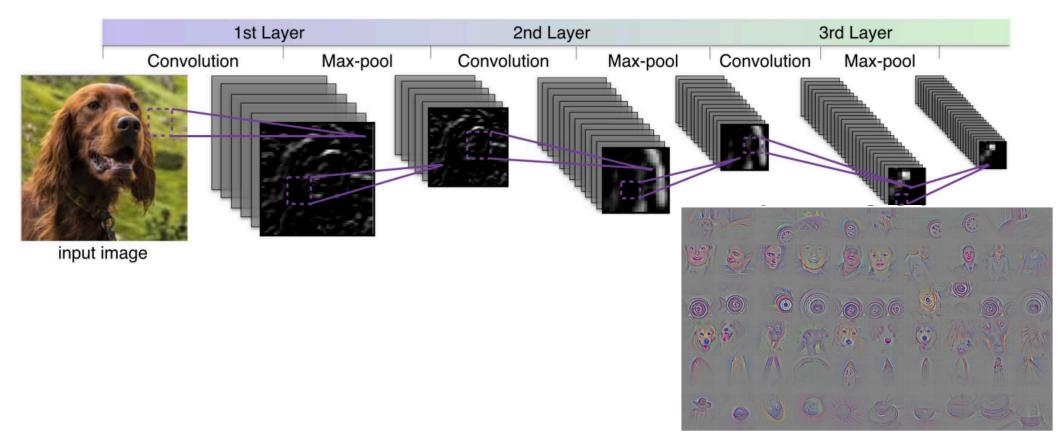
LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." *Neural computation*, 1989.



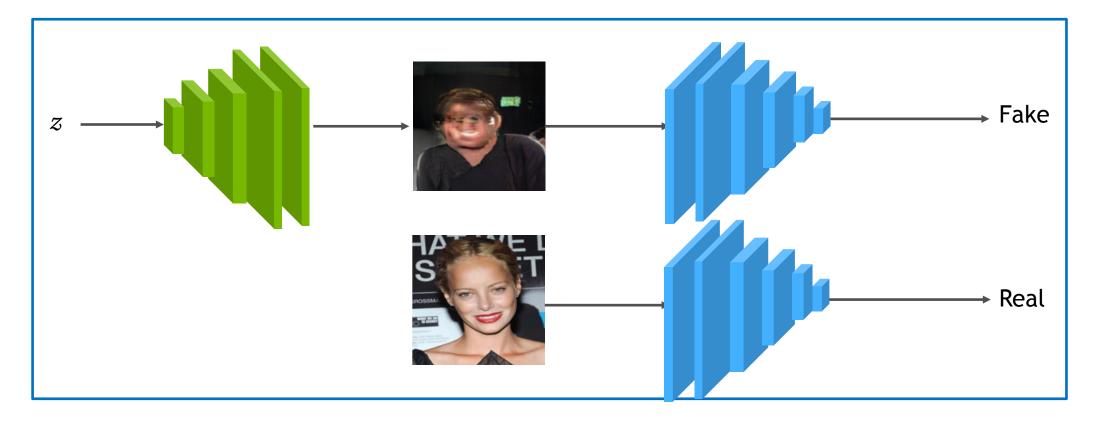
LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." *Neural computation*, 1989.



LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." *Neural computation*, 1989.



LeCun, Yann, et al. "Backpropagation applied to handwritten zip code recognition." Neural computation, 1989.

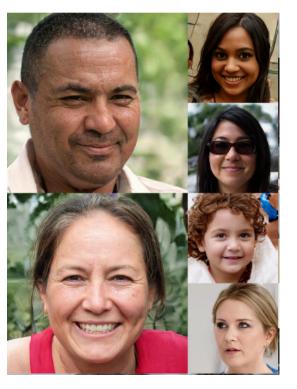


# IMAGE SYNTHESIS

#### Progressive GAN 2018







[1] Goodfellow, Ian, et al. "Generative adversarial nets." Neurips. 2014.

[2] Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." ICLR. 2016

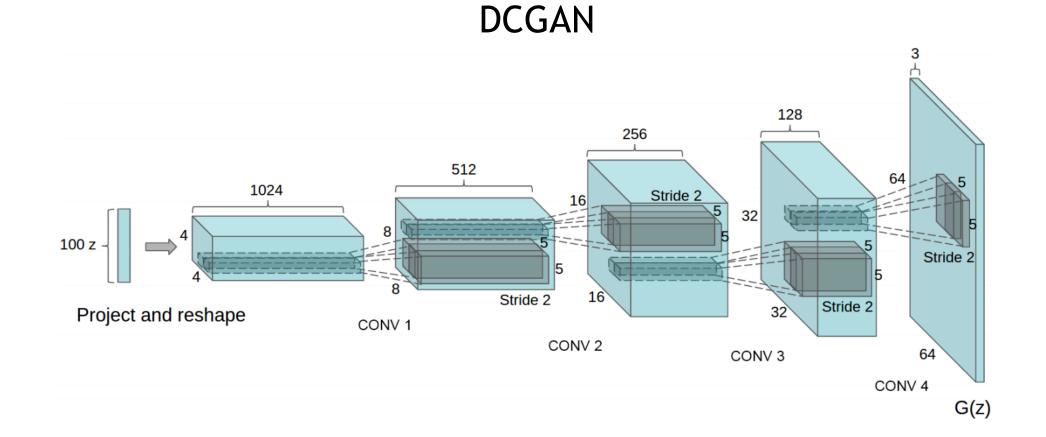
[3] Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." ICLR. 2018.
 [4] Karras, Tero, Samuli Laine, and Timo a. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.
 Aysegul Dundar

#### GAN 2014





**DCGAN 2016** 



Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." ICLR. 2016

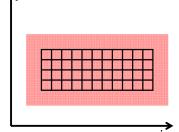
# DCGAN - INTERPOLATION

 $G(z_1)$   $G(1/2 * z_1 + 1/2 * z_2)$   $G(z_2)$ 

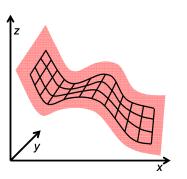


Radford, Alec, Luke Metz, and Soumith Chintala. "Unsupervised representation learning with deep convolutional generative adversarial networks." ICLR. 2016

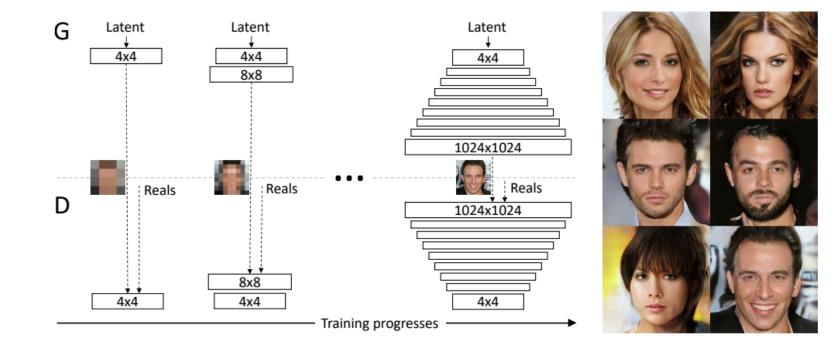
Aysegul Dundar



**1**i

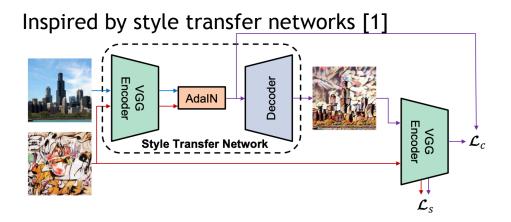


### **PROGRESSIVE GAN**



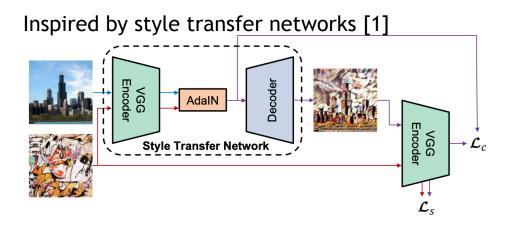
Karras, Tero, et al. "Progressive growing of gans for improved quality, stability, and variation." ICLR. 2018.

# STYLEGAN



[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." *ICCV*. 2017. StyleGAN: Karras, Tero, Samuli Laine, and Timo a. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.

## STYLEGAN

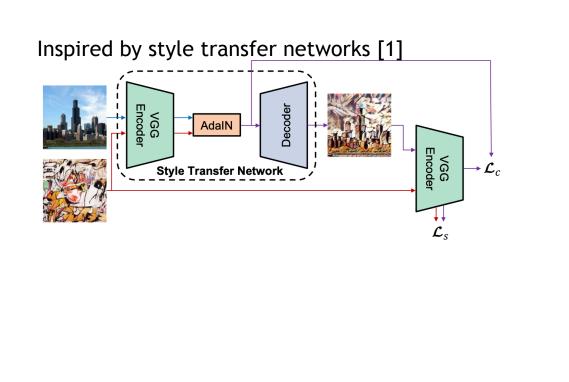


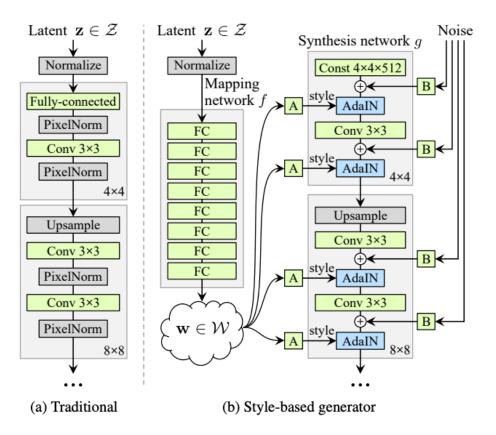
AdaIN
$$(x, y) = \sigma(y) \left( \frac{x - \mu(x)}{\sigma(x)} \right) + \mu(y)$$
 (8)

in which we simply scale the normalized content input with  $\sigma(y)$ , and shift it with  $\mu(y)$ . Similar to IN, these statistics are computed across spatial locations.

[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." *ICCV*. 2017. StyleGAN: Karras, Tero, Samuli Laine, and Timo a. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.

# STYLEGAN





[1] Huang, Xun, and Serge Belongie. "Arbitrary style transfer in real-time with adaptive instance normalization." *ICCV*. 2017. StyleGAN: Karras, Tero, Samuli Laine, and Timo a. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.

Aysegul Dundar

# STYLEGAN

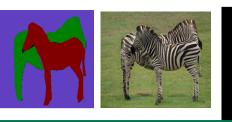


Karras, Tero, Samuli Laine, and Timo Aila. "A style-based generator architecture for generative adversarial networks." CVPR. 2019.

# OUTLINE

Image synthesis





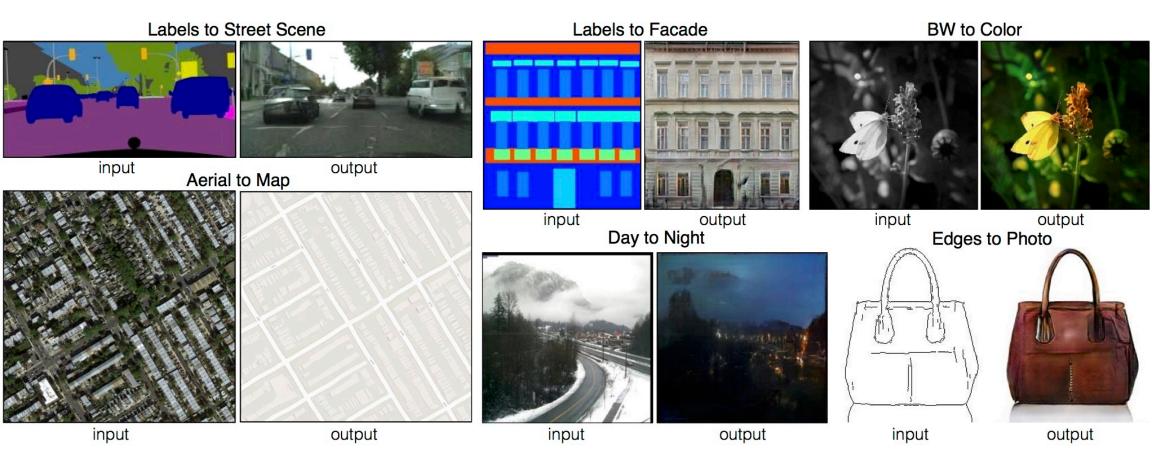




• Image inpainting

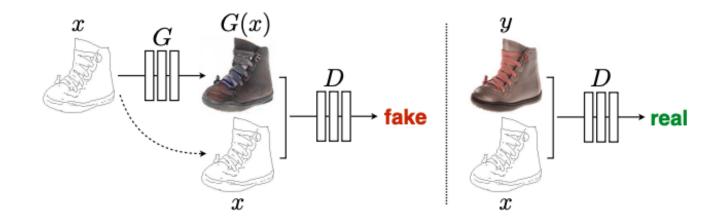


## CONDITIONAL IMAGE SYNTHESIS

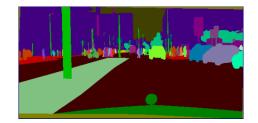


Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." CVPR. 2017. Aysegul Dundar

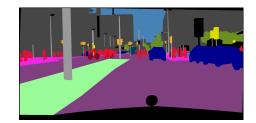
#### PIX2PIX



## PIX2PIX-HD



Panoptic map

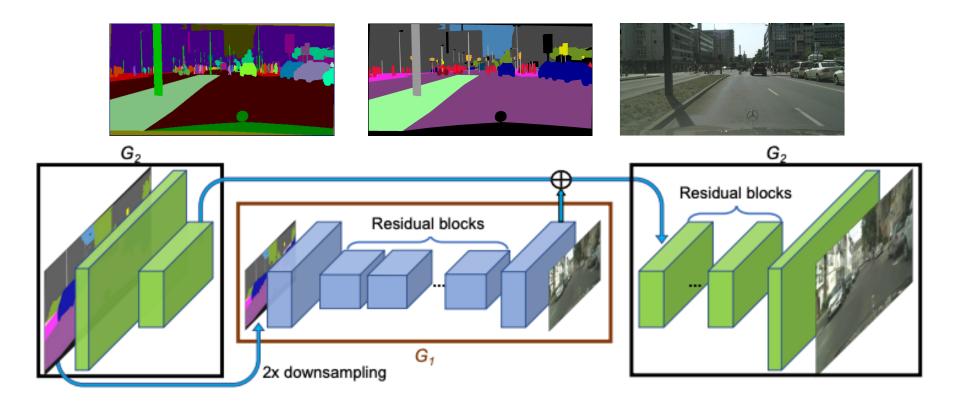




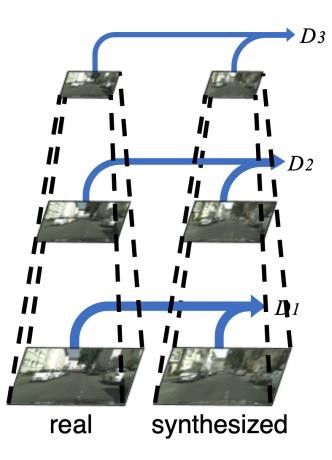


Real image

#### PIX2PIX-HD



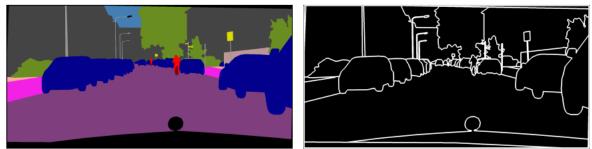
# **PIX2PIX-HD - DISCRIMINATOR**



Discriminator outputs multiple scales

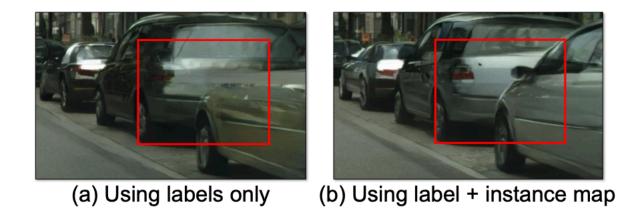
Handles global and local features

#### PIX2PIX-HD



(a) Semantic labels

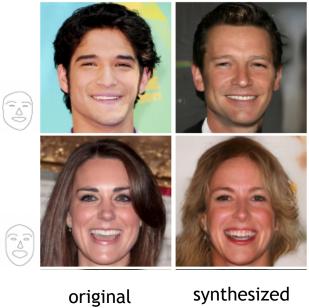
(b) Boundary map



Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." CVPR. 2018. Aysegul Dundar

#### PIX2PIX-HD

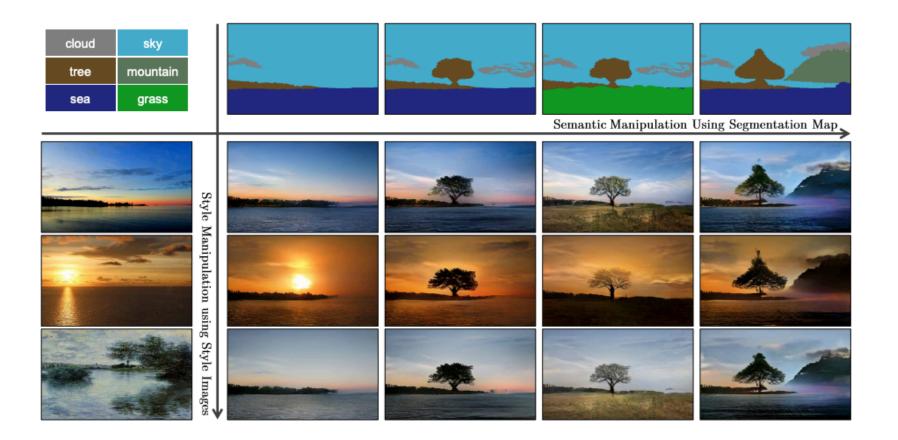




synthesized

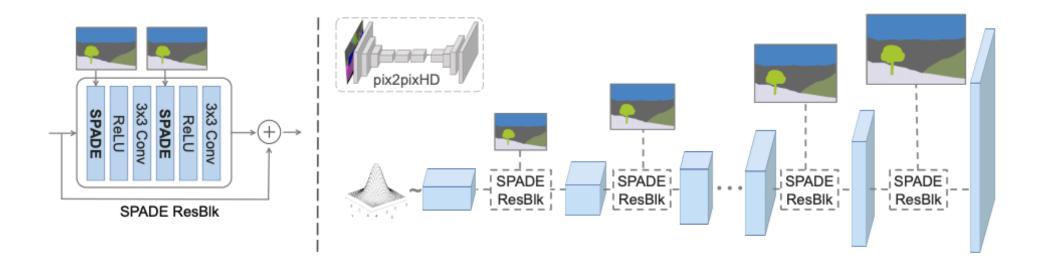
Wang, Ting-Chun, et al. "High-resolution image synthesis and semantic manipulation with conditional gans." CVPR. 2018. Aysegul Dundar

## SPADE

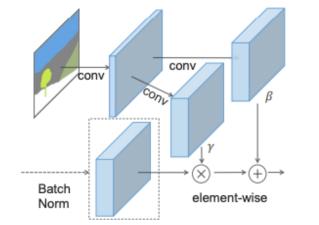


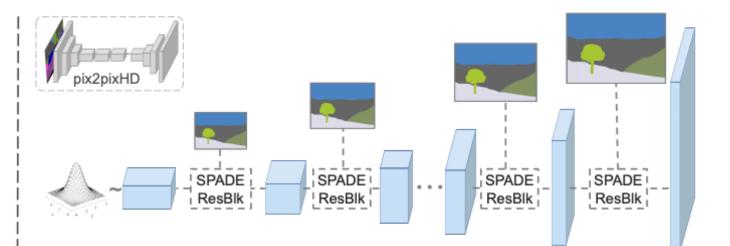
Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization."CVPR. 2019. Aysegul Dundar

#### **SPADE - SPATIALLY ADAPTIVE NORMALIZATION**

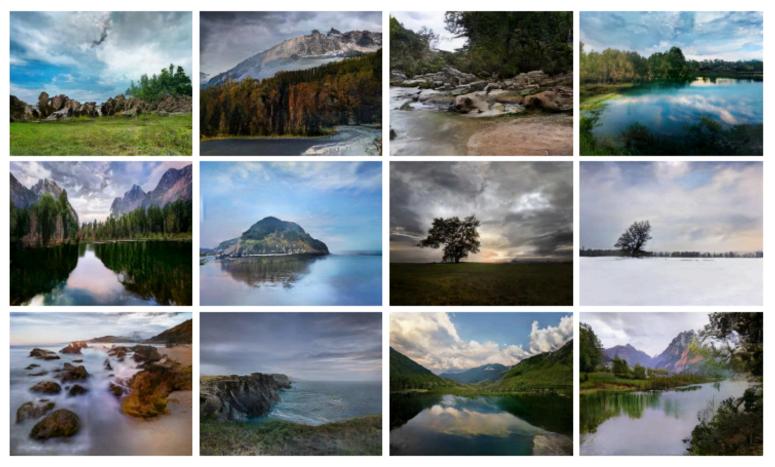


## ARCHITECTURE





## RESULTS

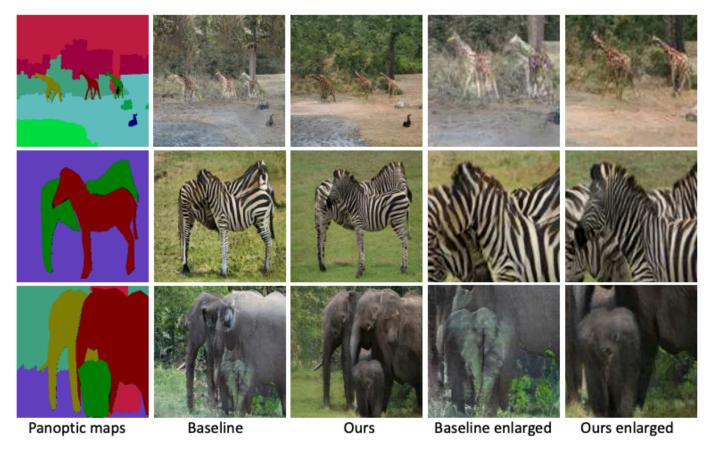


Park, Taesung, et al. "Semantic image synthesis with spatially-adaptive normalization."CVPR. 2019. Aysegul Dundar

## RESULTS



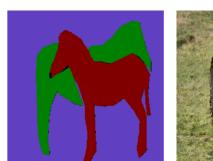
\_\_\_\_\_



• **Goal:** Synthesizing images given panoptic maps.

• Limitation of Prior Work: Conventional convolution layer operate independent of panoptic maps.

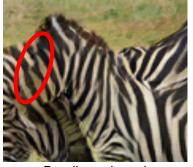
• **Proposal:** Use panoptic maps efficiently in convolution layer.





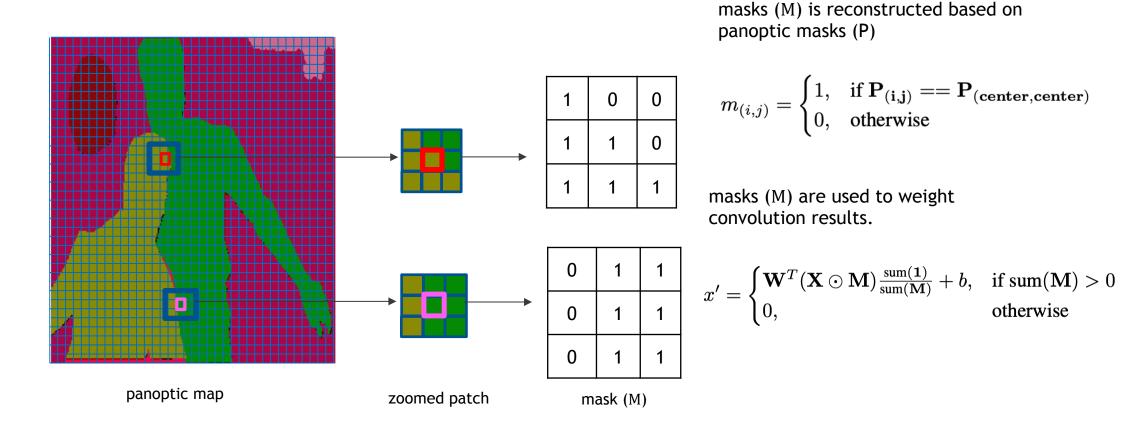


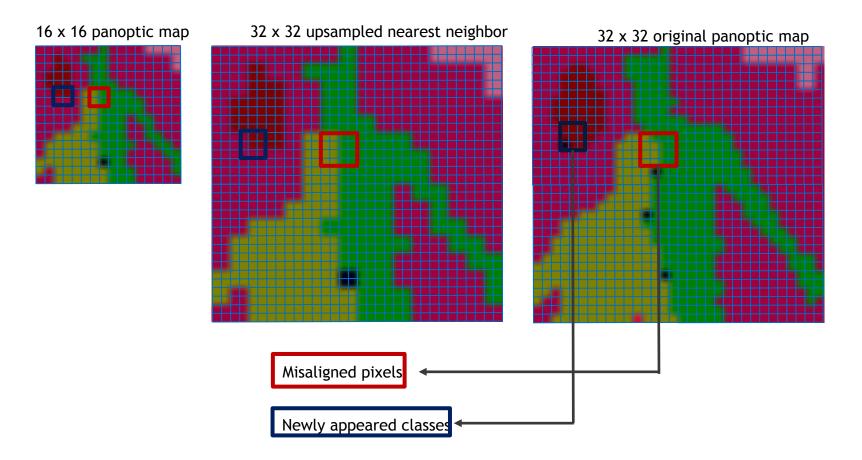
Ours



Baseline enlarged

Ours enlarged





# PANOPTIC AWARE UPSAMPLING LAYER

|                         |                       | 0 1 1 0                                                                                                |
|-------------------------|-----------------------|--------------------------------------------------------------------------------------------------------|
|                         |                       | Initialize: $M^{correction} =$                                                                         |
|                         |                       | for $i \in [0, 2W); j \in [0, 2H]$                                                                     |
|                         |                       | if $P_{i,j}^u == P_{i//2,j//2}^d$ (                                                                    |
|                         |                       | $F'^{u}_{i,j} = F^{d}_{i//2, j//2}$                                                                    |
|                         |                       | $M_{i,j}^{correction} = 1$                                                                             |
|                         |                       | end if                                                                                                 |
|                         |                       | end for                                                                                                |
|                         |                       | for $i \in [0, 2W); j \in [0, 2H]$                                                                     |
| upsampled panoptic map  | original panoptic map | if $P_{i,j}^u == P_{i//2+1,j//2}^d$                                                                    |
| appainpred panoprie map |                       | $F'^{u}_{i,j} = F^{d}_{i//2+1,j//2}$                                                                   |
|                         |                       | $M_{i,j}^{correction} = 1$                                                                             |
| ·                       |                       | end if                                                                                                 |
| aabb                    | aabb                  | end for                                                                                                |
|                         |                       | for $i \in [0, 2W); j \in [0, 2H]$                                                                     |
| aabb                    | a a <mark>a</mark> b  | if $P_{i,j}^u == P_{i//2,j//2+1}^d$                                                                    |
|                         |                       | $F'_{i,j}^u = F_{i//2,j//2+1}^d$<br>$M_{i,j}^{correction} = 1$                                         |
| upsampled w\            | upsampled w\          | $M_{i,j}^{correction} = 1$                                                                             |
| nearest neighbor        | ours                  | end if                                                                                                 |
|                         |                       | end for                                                                                                |
|                         |                       | for $i \in [0,2W); j \in [0,2H]$                                                                       |
|                         |                       | if $P_{i,j}^u == P_{i/2+1,j//2}^d$                                                                     |
|                         |                       | $\begin{array}{l} {\rm if} \ \ P_{i,j}^u == P_{i//2+1,j//2}^d \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $ |
|                         |                       | $M_{i,j}^{correction} = 1$                                                                             |
|                         |                       | end if                                                                                                 |
|                         |                       | end for                                                                                                |
|                         |                       |                                                                                                        |

Misaligned pixels

panoptic map

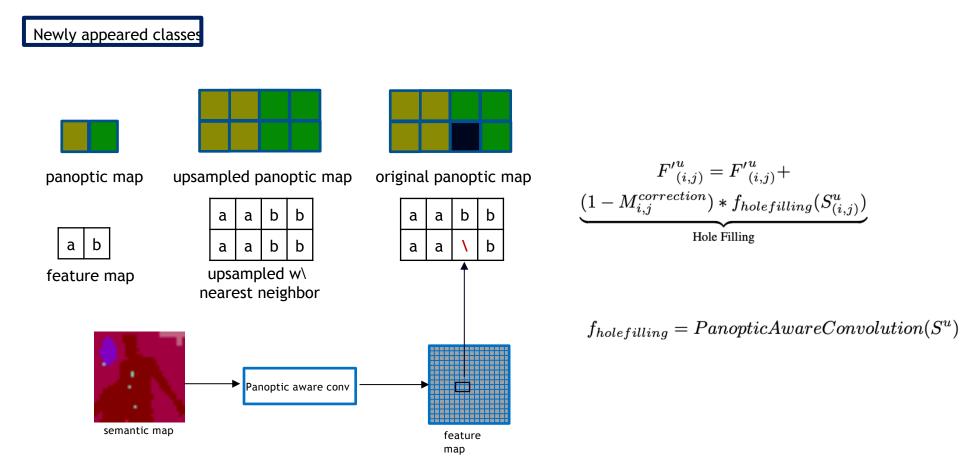
a b

feature map

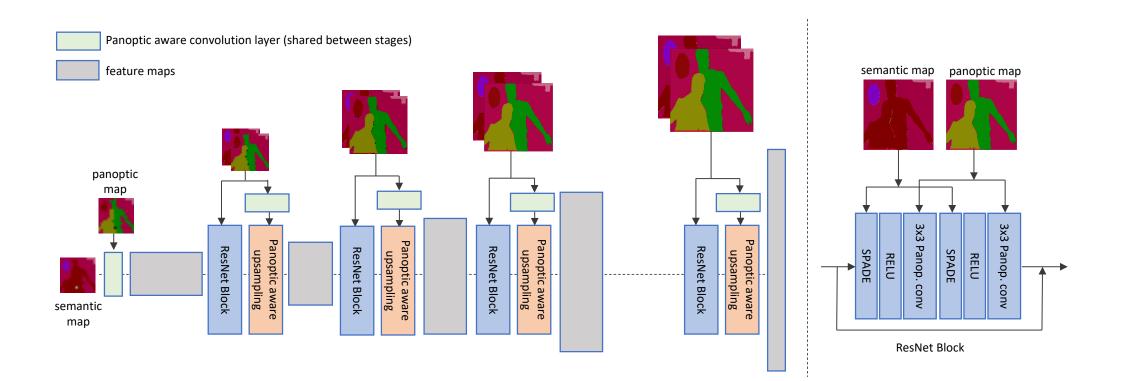
#### Algorithm 1 Upsampling Alignment Correction.

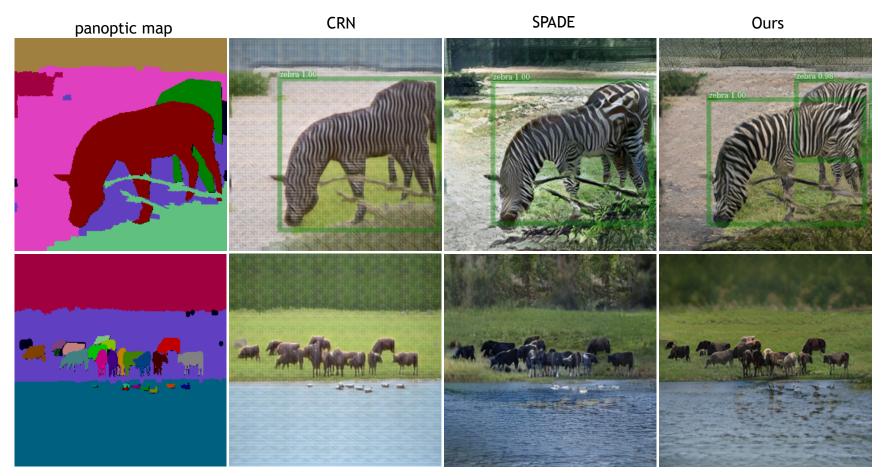
```
0, F'^u = 0,
(H) do
then
2H) do
and M_{i,j}^{correction}! = 1 then
\mathbf{2}
2H) do
and M_{i,j}^{correction}! = 1 then
-1
(H) do
, and M_{i,j}^{correction}! = 1 then
^{/2+1}
```

# PANOPTIC AWARE UPSAMPLING LAYER



# **OVERALL ARCHITECTURE**



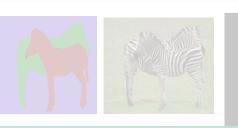


Dundar, Aysegul, et al. "Panoptic-based Image Synthesis." CVPR. 2020. Aysegul Dundar

# OUTLINE

• Image synthesis







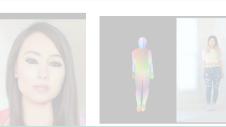
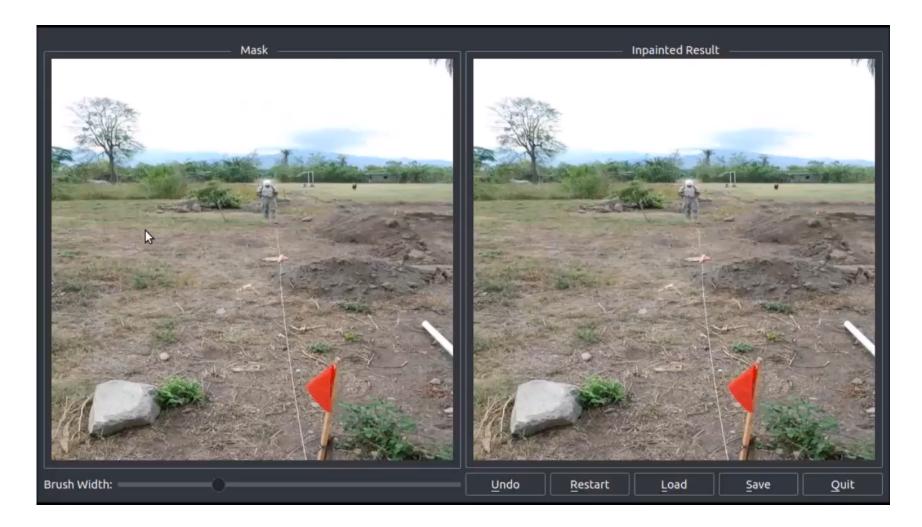


Image inpainting





online demo: www.nvidia.com/research/inpainting/

# **EXISTING WORK**



Input



PatchMatch Result

Adobe Photoshop

 Key idea: fill holes by iteratively searching similar patches

• Can't create novel thing

• Slow

# DEEP LEARNING-BASED APPROACH



- initialization for hole pixels (pixels with missing values)
- set initial values for holes, e.g. 0 or median values (127.5)
- treat original non-hole pixels and initial hole pixels equally -> confuse the network



initialize using median value



corresponding output



initialize using mean values



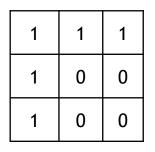
corresponding output

# PARTIAL CONVOLUTION FOR INPAINTING





X: input



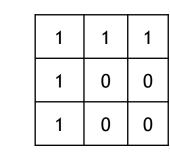
M: mask (1 means nonhole, 0 means hole) **Principles** 

Ignore pixels in the hole Only use non-hole pixels

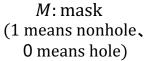
Mask/hole-aware convolution Re-normalize result using mask size Update mask as receptive field becomes larger

# PARTIAL CONVOLUTION FOR INPAINTING





*X*: input



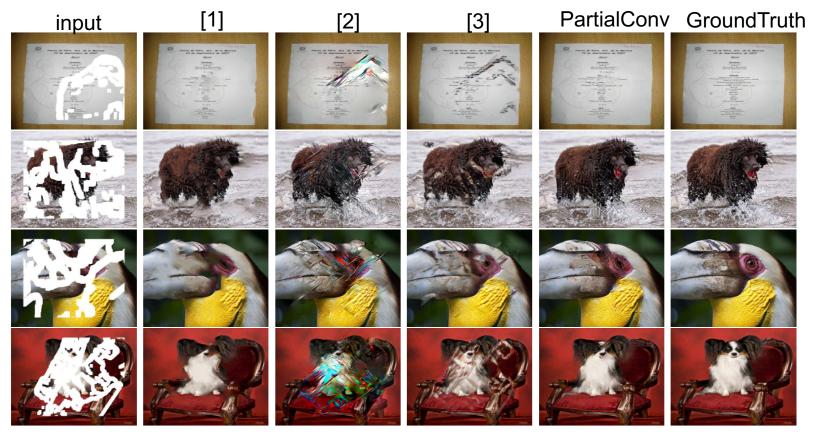
pixel update : 
$$X'_i = W^T (X \circ M) \cdot \frac{K^2}{sum(M)} + b$$

mask update : 
$$M'_i = \begin{cases} 1 & if sum(M) > 0 \\ 0 & if sum(M) = 0 \end{cases}$$



mask updating after several partial conv layers As the receptive field becomes larger, M will all become 1

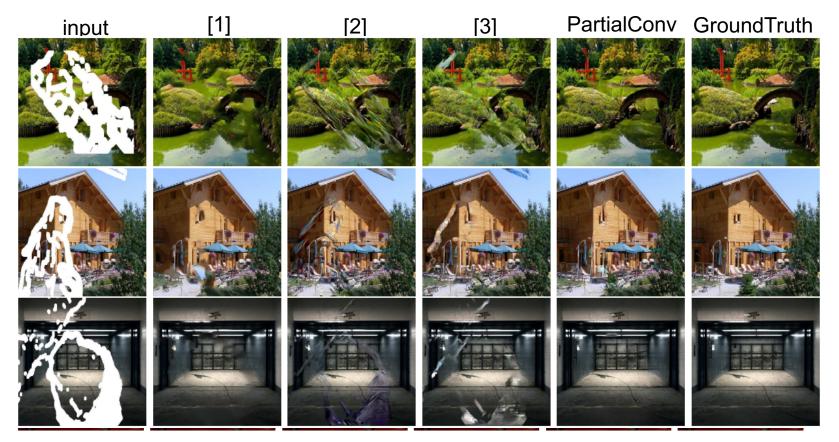
# RESULTS



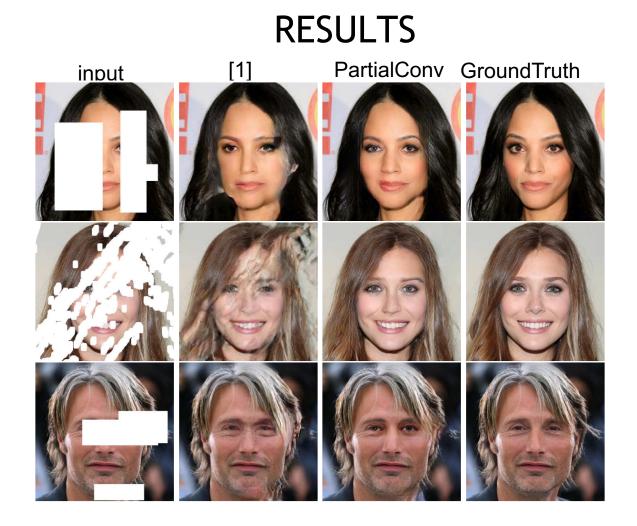
Barnes, C. et al: A randomized correspondence algorithm for structural image editing. TOG 2009. (PatchMatch)
 Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. TOG 2017.
 Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. CVPR 2018.
 Liu, Guilin, et al. "Image inpainting for irregular holes using partial convolutions." ECCV. 2018.

Aysegul Dundar

# RESULTS



Barnes, C. et al: A randomized correspondence algorithm for structural image editing. TOG 2009. (PatchMatch)
 Iizuka, S., Simo-Serra, E., Ishikawa, H.: Globally and locally consistent image completion. TOG 2017.
 Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. CVPR 2018.
 Liu, Guilin, et al. "Image inpainting for irregular holes using partial convolutions." ECCV. 2018.



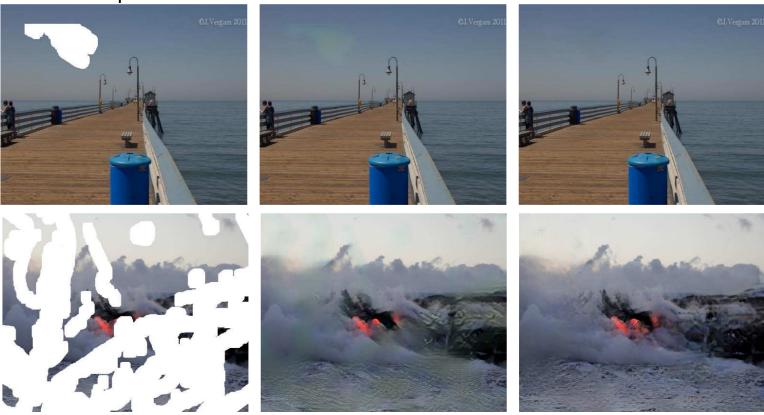
1. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. CVPR 2018.2. Liu, Guilin, et al. "Image inpainting for irregular holes using partial convolutions." ECCV. 2018.Aysegul Dundar

# COMPARE WITH TYPICAL CONVOLUTION

input

Conv

PartialConv



Liu, Guilin, et al. "Image inpainting for irregular holes using partial convolutions." ECCV. 2018. Aysegul Dundar

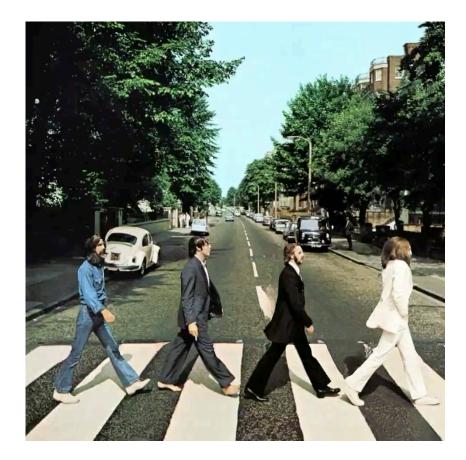
## **FUTURE DIRECTIONS**





#### FUTURE DIRECTIONS





# THANK YOU