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Part 1: Gradient Matching Networks

IEEE / CVF Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019
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Part 2: Zero-shot Detection and 
Captioning of Unseen Objects

British Machine Vision Conference (BMVC), September 2018
British Machine Vision Conference (BMVC), September 2019
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Part 3: Do we really need ZSL in practice?

IEEE Trans. On Geoscience and Remote Sensing, January 2018
IEEE Trans. On Geoscience and Remote Sensing, July 2019
British Machine Vision Conference (BMVC), September 2019
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Part 4: Partially-supervised domain transfer
for face recognition in the wildest

5
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Part I

Gradient Matching Networks
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Zero-shot object recognition

i - Learn a classification model 
on seen classes

ii - Use the model for both
sets

cow bird

Seen  
Classes

bat monkey

Unseen  
Classes

Training samples
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Semantic Class Embedding Space
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Mainstream approach

Class Embedding
cow

bird

cow

bird

Image Embedding
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A weakness in purely discriminative approaches

cow

bird

cow

bird

bat

monkeybat

monkey

Image Embedding Class Embedding

Akata et al. "Label-embedding for attribute-based classification."  CVPR 2013.
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Generative-model-based approaches

Seen  Classes
cow bird ɸ

Unseen  
Classesmonkey

has-
arm

has-tail

has-
wing
has-
teeth

bat

Class embeddings

Image Embedding

Examples:
• Xian et al. "Feature generating networks for zero-shot learning." CVPR 2018.
• Verma et al. "Generalized zero-shot learning via synthesized examples." CVPR 2018.
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First attempt: conditional GAN
A naive idea: just train a conditional GAN model (or another implicit generative 
model), which takes concat(noise,class-embedding) as the input.
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First attempt: conditional GAN
A naive idea: just train a conditional GAN model (or another implicit generative 
model), which takes concat(noise,class-embedding) as the input.

.. but there are three important inter-connected challenges: 

- Semantics: How do we enforce producing samples that truly belong to the 
target class?

- Variance: How do we enforce producing a variety of samples for a given 
embedding? 

- Data quality: How do we make sure that the resulting training examples is 
actually useful? (ie. will the classifier trained over them be accurate?)
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A second attempt
Train a conditional GAN using GAN loss + loss function of a classifier over the 
training classes. 

At test time: simply synthesize training examples by feeding class-embeddings of 
test (unseen) classes to the GAN model.

Good: can leverage unsupervised data through the GAN loss.
Good: can enforce generating examples that are classified to the right class.
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A second attempt
Train a conditional GAN using GAN loss + loss function of a pre-trained 
classifier over the training classes. 

At test time: simply synthesize training examples by feeding class-embeddings of 
test (unseen) classes to the GAN model.

Good: can leverage unsupervised data through the GAN loss.
Good: can enforce generating examples that are classified to the right class.

However, 
● The generated samples are not necessarily informative (like support vectors)

ones (Likely, the generative model will learn to synthesize the "easy" samples.)
● The generated samples may contain artifacts detrimental for training purposes.
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3rd attempt: a meta-learning approach
Assume that the synthetic (+real) examples will be used to train a classifier using 
a first-order gradient optimization technique.
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3rd attempt: a meta-learning approach
Assume that the synthetic (+real) examples will be used to train a classifier using 
a first-order gradient optimization technique.

Seen  Classes
cow bird ɸ

Image Embedding Unseen  
Classesmonkey

has-
arm

has-tail

has-
wing
has-
teeth

bat

Class embeddings
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A meta-learning approach
Assume that the synthetic (+real) examples will be used to train a classifier using 
a first-order gradient optimization technique.

Seen  Classes
cow bird ɸ

Image Embedding Unseen  
Classesmonkey

has-
arm

has-tail

has-
wing
has-
teeth

bat

Class embeddings

Can we optimize G such that we minimize 
the loss of final f ? 
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A meta-learning approach
Assume that the synthetic (+real) examples will be used to train a classifier using 
a first-order gradient optimization technique.

Seen  Classes
cow bird ɸ

Image Embedding Unseen  
Classesmonkey

has-
arm

has-tail

has-
wing
has-
teeth

bat

Class embeddings

Can we optimize G such that we minimize 
the loss of final f ? 

Not naively. To measure the impact of G on 
the final loss, we need make many model 
updates. 

That is, just for a single G update, we need to 
make many f updates. Very inefficient!
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Our idea
Assume that the synthetic (+real) examples will be used to train a classifier using 
a first-order gradient optimization technique.

Seen  Classes
cow bird ɸ

Image Embedding Unseen  
Classesmonkey

has-
arm

has-tail

has-
wing
has-
teeth

bat

Class embeddings

Focus on learning to generate examples that 
maximizes the correctness of individual model 
updates.

The core idea: for classes with a good training set, 
the model updates over real versus synthetic 
examples shall be similar.
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Gradient matching loss

Gradient by 
generated 

Gradient by 
real 
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To approximate the expectation over θ

Repeatedly:

● train the classification model N epochs,
● re-initialize all parameters and reset the optimizer state.
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Gradient matching network (GMN)
Gradient matching loss 
+ adversarial loss

(can be used for unsupervised learning)

ɸ has-wing
has-beak

(proposed)

Image Embedding
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● Caltech-UCSD Birds-200-2011 (CUB) - 200 bird species - 12k

● SUN Attribute (SUN) - 717 scene categories - 14k

● Animals with Attributes (AWA) - 50 animal categories - 30k

Experiments - Datasets

Wah et al. “The Caltech-UCSD Birds-200-2011 Dataset”, 2011.
Patterson et al. “Sun attribute database: Discovering, annotating, and recognizing scene attributes” CVPR, 2012.
Lampert et al. “Attribute-based classification for zero-shot visual object categorization” TPAMI, 2013.
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Evaluation Metrics

Normalized score (NS) : average of the top-1 per-class scores

● T-1 : NS of unseen classes in ZSL setting

● u: NS of unseen classes  in GZSL setting

● s: NS of seen classes in  GZSL setting

● h: harmonic mean of u and s
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Zero-shot prediction (unseen classes)
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Generalized zero-shot prediction 
(seen + unseen classes)
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In summary

● a novel proxy loss for zero-shot learning
○ better estimation of class distributions

● state of the art on CUB, AWA and SUN

Source code: https://mbsariyildiz.github.io/

https://mbsariyildiz.github.io/
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Part II

Zero-shot Detection and 
Captioning of Unseen Objects
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Why study zero-shot detection?

Detection in the Wild
using text-based queries

Robotic



Gokberk Cinbis - 2020 31

Our approach
➔ Our method consists of two components:

◆ (i) utilize a convex combination of class embeddings,
◆ (ii) directly learn to map regions to the space of class embeddings.

➔ Zero-shot object detection within the YOLO detection framework.
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Convex Combination of Class Embeddings

● Represent a given image region (i.e. a bounding box) as the convex 
combination of training class embeddings. Class 

embedding
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Convex Combination of Class Embeddings

● Represent a given image region (i.e. a bounding box) as the convex 
combination of training class embeddings. Sum of class embeddings, 

weighted by posterior 
probability
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Region Scoring by Label Embedding
● The goal is to directly model the compatibility between the visual features of 

image regions and class embeddings.
● The equation can be interpreted as a dot product between L2-normalized 

image region descriptors and class embeddings.

Region 
descriptor
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Hybrid region embedding

● The two scores are accumulated within the loss function:
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Experimental Results on PASCAL VOC
● Select 16 of the 20 classes as the training set.
● Remaining 4 classes as the test set. These test classes are car, dog, sofa 

and train respectively.
● Class-attribute relations of aPaY dataset are used for semantic descriptions.
● 65.6% mAP on seen classes, 54.6% mAP on unseen ones.
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Example detections
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Captioning with Unseen Objects

● Motivation: Overcome the data collection bottleneck in 
image captioning.

● Task: Define a new paradigm for generating captions of 
unseen classes.

● Key Idea: Use zero-shot object detector with template 
based sentence generator.
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Zero-shot Image Captioning

“a person
riding a horse”

Image Captioning

Visual 
Input

Textua
l Input 
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Zero-shot Image Captioning

“a person
riding a horse”

Image Captioning

Visual 
Input

Textua
l Input 

“a person
riding a horse”

(Partial) Zero-Shot 
Image Captioning

{person, horse} ∈ unseen 
classes
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Zero-shot Image Captioning

“a person
riding a horse”

Image Captioning

Visual 
Input

Textua
l Input 

“a person
riding a horse”

(Partial) Zero-Shot 
Image Captioning

“a person
riding a horse”

True Zero-Shot 
Image Captioning

{person, horse} ∈ unseen 
classes
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Framework - Fully Zero-shot Image Captioning

horse

person

Template Generator
(RNN)

A  woman riding a horseperson horse

Region Features

Sentence Template

Class 
Embeddings

Detection Network

Image Caption 
Generator*

* Lu, Jiasen, et al. "Neural baby talk." CVPR 2018.

Generalized Zero-
Shot 

Object Detector
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Improving ZSD: Generalized Zero-shot Detection
- Unlike the prior work on ZSD, test captioning images 

contain a mixture of seen and unseen classes.

- Typically there is a significant bias towards the seen 
classes.

- Aim to overcome this problem by learning a scaling 
coefficient:

! ", $, % = '(! ", $, % , %! $ ∈ Ŷ+
! ", $, % , ,-ℎ/01%2/



Gokberk Cinbis - 2020 44

Improving (G)ZSD - Better embeddings
● Reminder: detection scoring function ! ", $, % is defined as follows:

● Here, &($) represents the class embedding for class $, which is now 
obtained in terms of target-class to training-class similarities in the 
word embedding space: 

● We also drop the convex combination approach to be able to deal 
with GZSD better.

! ", $, % = )Ω ", % +ψ($
Ω(", %) ψ $

ψ $ = φ $ +φ ̅$ + 1 ̅1
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Experimental Setup
§ Dataset: MS-COCO splits for evaluating zero-shot image captioning.

§ Evaluation: F1 score, METEOR, SPICE, ROUGE-L, BLEU metrics.

§ Class embeddings: Use 300-dim word2vec of class embeddings.

§ Evaluation - GZSD: Use COCO val5k split, which contains both
seen and unseen class instances.
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Generalized-ZSD results

Classes GZSD w/o ! GZSD

Bottle 0 0.8
Bus 0 21.4

Couch 2.7 4.9
Microware 0 1.2

Pizza 0 4.8
Racket 0 0.7

Suitcase 0 9.1
Zebra 0 15.8

U-mAP(%) 0.3 7.3
S-mAP(%) 27.4 19.2

Harmonic Mean 0.7 10.6

Typically, an 
unseen class 
instance is 

detected as the 
instance of some 

seen class
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Image Captioning Results

Comparison Results

A yellow and black 
train traveling 
down the road.

A yellow and black 
bus driving down a 

road.

A piece of cake on a 
white plate.

A piece of pizza on a 
white plate.

NBT-
Baseline 

Proposed 
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Image Captioning Results

Comparison Results

A yellow and black 
train traveling 
down the road.

A yellow and black 
bus driving down a 

road.

A piece of cake on a 
white plate.

A piece of pizza on a 
white plate.

NBT-
Baseline 

Proposed 
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Qualitative Results
Image captioning results of images which consist of seen and unseen classes:
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In summary,

● a new problem: generating captions of images with unseen classes.

● a novel approach for generalized zero-shot object detection problem.
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Part III

Do we really need ZSL in practice?
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Do we really need ZSL in practice?
● ZSL sometimes sounds like a pratically irrelevant problem 

given that there are several large-scale datasets, such as 
Google Open Images, ImageNet, etc. 

However:
● 1) These datasets are arguably still very far from capturing 

richness of human vision
● 2) Large-scale data collection can be inherently difficult 

due to physical constraints, lack of annotation experts, 
etc. in certain problems.
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Do we really need ZSL in practice?
● I will talk about two examples:

○ Fine-grained recognition in remote sensing 

○ Sign Language Recognition
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Traditional Object Recognition in Remote Sensing
● The mainstream object recognition task 

in remote sensing:
○ Benchmark datasets: UC Merced, AID, etc.
○ Assign each pixel/patch to one of few categories
○ eg. Agricultural vs Beach vs Forest vs Freeway 

vs Harbor 
○ Typically there are a large number of examples 

per class

● Distinct classes
● Largely an over-simplified categorization 

of earth surface

gisgeography.com/image-classification-techniques-
remote-sensing/
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Fine-grained Recognition in Remote Sensing
● Under-studied problem: fine-grained, semantically rich recognition
● Our focus: 40 different tree species and their satellite views
● We manually cleaned 48k GPS-tagged samples belonging to 40 top 

categories 
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Formulation
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Multisource Region 
Attention Network
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The quantitative annotation advantage of ZSL

● ZSL is advantageous up to 256 supervised samples
● Note that (i) ZSL uses no examples, (ii) most categories are hard to 

distinguish even by visual inspection
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Data collection problem, revisited
● Collection of even 256 samples can be very 

costly

● Just not possible to annotation by looking into 
the images. It is necessary to physically visit 
the instances & GPS-tag them.

● 16-test classes, around Seattle (WA), 
scattered around 217 km2

● Arguably not feasible for scaling up for 
monitoring tree species all over the world.
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Sign Language Recognition

60

Most of the SLR approaches require a 
large amount of annotated data to 
recognize predefined sign classes.

Problem 1: 
Excessive manual 

annotation

Problem 2: What if we want to 
recognize other signs?
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Learning Signs with 
Minimal Supervision
● Languages are constantly 

growing
○ Thousands of new words are 

added to OED every year.
● Same is true for Sign Languages

…
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Zero-shot Sign Language Recognition 
(ZSSLR)

62

BICYCLE: Move both S hands in
alternating forward circles, palms facing
down, in front of each side of the body.

HIGH: Move the right H hand, palm facing
left and fingers pointing forward, from in
front of the right side of the chest upward
to near the right side of the head.
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Our ZSSLR model

63
Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.
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Our ZSSLR model

64
Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.

Frame embedding
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Our ZSSLR model

65
Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.

Temporal model
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Our ZSSLR model

66
Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.

Textual embedding
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Our ZSSLR model

67
Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.

ZSL
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Text description embeddings

68

FRIEND

HAMBURGER

Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “Zero-shot Sign Language Recognition: Can Textual Data Uncover Sign Languages?”, BMVC 2019.



Gokberk Cinbis - 2020 69

ZSSLR Experimental Results 

69

Accuracies are still quite low, large room for improvement

Dataset available for download : https://ycbilge.github.io/zsslr.html

https://ycbilge.github.io/zsslr.html
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Conclusions

● Presented two problems where the need for zero-shot learning 

naturally emerges:

1. Fine-grained recognition in remote sensing – towards globally 

monitoring all tree species 

2. Sign Language Recognition – towards recon – towards 

recognizing all words in all sign languages, with quick adaptation 

to novel words
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Face Recognition in the “Wildest”

● Face Recognition is largely solved in controlled cases   
(> 95% accuracy).

● People in criminal activity expose a diverse set of facial 
expressions

● These people may not necessarily have prior criminal 
records 

○ Only have passport or Facebook type photos  

72
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Al Pacino

Brad Pitt

Hillary Swank
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WildestFaces Dataset

74

Collected video scenes from YouTube
– Car chase, fist fights, gun fights, heated arguments
– 64 actors
– 2186 shots - 64,242 frames

Clean images from IMDB-WIKI & Internet 
– 64 actors
– 8069 images 

Some may not have prior violent footage –> Partially supervised
GZSL-like setting
• Train: clean images of 64 classes, videos of 40 seen classes
• Val: videos of 40 seen classes, 10 unseen classes
• Test: videos of 64 classes (seen + unseen)

Y.C. Bilge, N. Ikizler-Cinbis, R.G. Cinbis, “From RedCarpet to FightClub”, in submission.
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target domain
classifier

Partially Supervised Domain 
Transfer 

Image 
representation

Classifier transfer + 
temporal adaptation

source domain
classifier
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Classifier transfer layer

Fully-connected classifier transfer

Affine classifier transfer
Residual 
stacked 
affine
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Temporal adaptation

Attentive temporal 
pooling

Temporal average 
pooling Attention 

matrix
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Summary
● Towards semantically rich recognition systems, build models that are 

○ more flexible
○ more tightly integrated with language 
○ requires less supervision

● Presented:
○ Gradient Matching Networks (currently for ZSL)
○ A zero-shot object detection approach, with application to image 

captioning
○ Two real-world applications of ZSL
○ A partially supervised model domain transfer problem
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Thank you!


