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Supervised recognition – success stories

Slide collaged from cs231n of Stanford University
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Supervised training – image classification
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Supervised training – object detection
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Supervised training – panoptic segmentation

https://arxiv.org/pdf/1801.00868.pdf

https://arxiv.org/pdf/1801.00868.pdf
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* Torralba, et al. 2008. 

How many training examples do we need?
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● 75.000 non-abstract nouns from WordNet*, some of which are rare

* Torralba, et al. 2008. 

How many training examples do we need?
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● … plus object combinations, scenes

● It is not feasible to collect several fully annotated samples per "class"
● (... and categorization is a questionable paradigm) 

A tennis player hitting a ball Fork with spaghetti Wedding car

How many training examples do we need?
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● The main goal: minimize the data collection and/or annotation effort. 

● Many exciting research directions:
○ Unsupervised representation learning
○ Self-supervised learning (extract pseudo-supervision from data)
○ Semi-supervised learning (unsupervised + supervised)
○ Weakly-supervised localization (training images with labels only)
○ Zero-shot learning (novel classes based on auxiliary knowledge)
○ Few-shot learning (learning from few examples)
○ Partially-supervised learning (learning from few examples)
○ .... 

Learning with Incomplete Supervision
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SESSION 1

Lecture

Modern deep generative models
for unsupervised learning

For more material:  
METU CENG 796

Deep Generative Models

Talk overview

https://user.ceng.metu.edu.tr/~gcinbis/courses/Spring20/CENG796/index.html
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SESSION 1

Lecture

Modern deep generative models
for unsupervised learning

For more material:  
METU CENG 796

Deep Generative Models

SESSION 2

Research

● Zero-shot learning with
generative & discriminative
models

● Partially supervised domain 
transfer

● Q/A

Talk overview

https://user.ceng.metu.edu.tr/~gcinbis/courses/Spring20/CENG796/index.html
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Session I

An overview of contemporary generative models



Slide by Stefano Ermon, Aditya Grover
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Coverage

Auto-regressive models Variational latent models

Normalizing flow models

GANs 

Slide by Emre Akbas
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Auto-regressive models



Slide by Stefano Ermon, Aditya Grover
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Hugo Larochelle, Iain Murray
The Neural Autoregressive Distribution Estimator
AISTATS 2011
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Summary of the auto-regressive models



Latent variable models
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Normalizing Flows



Slide by Stefano Ermon, Aditya Grover
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Generative Adversarial Networks



So far…

● Autoregressive models
● Normalizing Flows
● Latent Variable Models, VAEs

● All these models are likelihood-based.

● Now GANs: focus on sample quality, directly.



Implicit Models

■ Sample z from a fixed noise source distribution 
(uniform or gaussian).

■ Pass the noise through a deep neural network 
to obtain a sample x. 

■ Sounds familiar?  Right: 
■ Flow Models
■ VAE

■ What’s going to be different here? 
■ Learning the deep neural network without explicit

density estimation

56



Motivation for GANs



Motivation for GANs

[BigGAN, Brock, 
Donahue, Simonyan, 

2018]
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[BigGAN, Brock, 
Donahue, Simonyan, 

2018]



Core GAN formulation

Figure from NeurIPS 2016 
GAN Tutorial (Goodfellow)



What G() does (original) GAN optimize after all?

● Assume that D() is Bayes-optimal, then:
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Advances in GANs

● Many, many applications (image
manipulation, style transfer, guided
image generation, etc.)

● Better architectures (eg, StyleGAN), 
better loss functions (eg, Wasserstein
GAN), better regularization
techniques (eg, Spectral Norm), better
conditioning techniques (eg, 
Projection Discriminator)

StyleGAN v2
Karras et al 2019



Open problems in GANs

● Better modeling of complex scenes

● Improving training stability

● Improving sample quality

● Better use in representation-learning



Summary

● We have very briefly summarized: auto-regressive
models, normalizing flows, VAEs, GANs

● There are several other important ones, such as 
Energy-based models, hybrid models, moment-matching
networks, etc.

● The search for more principled, more stable, 
representation-inferring, high-quality sample
generating models continues!



TESEKKURLER


