Bilim Akademisi - Bilkent Universitesi
Yapay Ogrenme Yaz Okulu 2020

Gokberk Cinbisg

Department of Computer Engineering

ORTA DOGU TEKNIK UNIVERSITESI
MIDDLE EAST TECHNICAL UNIVERSITY

Imagelab

Gokberk Cinbis - 2020 1

Supervised recognition — success stories

Hi, how can | help?

A white teddy bear sitting in
the grass

Gokberk Cinbis - 2020 2

Supervised training — image Classification

ornol%OO*nbméﬂﬂolwmlMﬁMﬂ1Imllluzi'l-§nn@
EENel- O oH =ESEET TEceB-SNENODND OEOEEDTORE
SOREREmESElll) HnEEROEEERENN BN D ETECE SN «
SREEDREEERD .V EEHSHEBOEE A eEEONR £ s Ry 3
ALAEFPERS~diDa=Ni g =B RDnErMKEOIEN I BFNENT
ﬂ@%lﬂﬂ!ﬂﬁﬁillﬂﬂHEEIEOEh.&ﬂﬁﬂﬂﬂ!ﬁﬁﬂﬂﬂﬁm?ﬂ
HBrg B+ VN FodlatdEB6NMAGE] = -mepwvyes -E-Aaisll
' v« EMEDERCECEENE . CINEFSA0Es EATE VS aRTR
FTHaETHEES laBE# RN y4s WA CMENCHY S2oB«DavHaaEy
aPFasBea'alGuewd vOMR AR o LW =NPTE AT - i Ee
PR IR fless s EESIR=e DEERNEaESlCcH.EnR

-IH--3EBIIIEH=EmE=4tﬁl'cﬁ"ﬁﬁcuh/.—e'/BPI
NEER®* 5H-Cnle-\RIC-/H, ‘OEIE. ~o=>H >l (¥~
— /Bl =S FH9Ba Eigs B 5 lﬂm-ﬁ“\).ng m 20 LY B R
ReBTOBIE \\ WML 17U T i = «Fc He ogfl¥\ /

o =Cl/ S, HESE o EE m-&ﬁia5iumuaamux=@’
EEEELsEr et c EnthDielad s/ TN ciS® aRES . wED
AMIYoSEEHE epbLEE OF AT~ Flf i LERETS0 sEaeey i ™ r-
!@!EME~:4IIJ!IIHE W A S N i s o T @RS8O -

S=HEEI-I-Rwis > &$~*HHIAWIai—-EnﬁuﬁaﬂnziAHﬁ
AL LOERR LA B<LUEN S SNFRTAR S Z i E VS0 E Amw™n
8 | ;_eIﬂe~~l-;rlu§bnoﬂtuvilﬂtﬁﬂﬂfnsﬂhnnmu
TORPQE " Ft[sThClrcteillecHIZNFINE L " a | 2l o
AEMERsE FMeigHl<1vARI LN /28 Jmem=:gm¢ L[|

Gokberk Cinbis - 2020 K

Supervised training — object detection

carLeftTrunc

Gokberk Cinbis - 2020 4

Supervised training — panoptic segmentation

S
g
o
=
=
8
&

prediction

/pdf/1801.00868.pdf

Gokberk Cinbis - 2020 5

https://arxiv.org/pdf/1801.00868.pdf

How many training examples do we need?

Gokberk Cinbis - 2020 6

How many training examples do we need?

® 75.000 non-abstract nouns from WordNet* some of wh|ch are rare

* Torralba, et al. 2008.

Gokberk Cinbis - 2020 7

How many training examples do we need?

® 75.000 non-abstract nouns from WordNet* some of wh|ch are rare

Summary of selected subtrees
o Subtree | # Synsets Ave. s ynset 'I_'otal #
size |ma§e
Mammal 1170 737 862K
o 0.15 Vehicle 520 610 317K
~ GeoForm 176 436 77K
g Furniture 197 797 157K
© oa Bird 872 809 705K
8_ Musiclnstr 164 672 110K
0.05

500) 1000 1500 2000 2500
images per synset

P

* Torralba, et al. 2008.

Gokberk Cinbis - 2020 8

How many training examples do we need?

® ... plus object combinations, scenes

o

A tennis player hitting a ball Fork with spaghetti Wedding car

® |t is not feasible to collect several fully annotated samples per "class"
® (... and categorization is a questionable paradigm)

Gokberk Cinbis - 2020 9

Learning with Incomplete Supervision

® The main goal: minimize the data collection and/or annotation effort.

® Many exciting research directions:

@)

O O O O O O O

Gokberk Cinbis - 2020

Unsupervised representation learning

Self-supervised learning (extract pseudo-supervision from data)
Semi-supervised learning (unsupervised + supervised)
Weakly-supervised localization (training images with labels only)
Zero-shot learning (novel classes based on auxiliary knowledge)
Few-shot learning (learning from few examples)
Partially-supervised learning (learning from few examples)

Learning with Incomplete Supervision

® The main goal: minimize the data collection and/or annotation effort.

® Many exciting research directions:

@)

O O O O O O O

Gokberk Cinbis - 2020

Unsupervised representation learning

Self-supervised learning (extract pseudo-supervision from data)
Semi-supervised learning (unsupervised + supervised)
Weakly-supervised localization (training images with labels only)
Zero-shot learning (novel classes based on auxiliary knowledge)
Few-shot learning (learning from few examples)
Partially-supervised learning (learning from few examples)

Learning with Incomplete Supervision

® The main goal: minimize the data collection and/or annotation effort.

® Many exciting research directions:

@)

O O O O O O O

Gokberk Cinbis - 2020

Unsupervised representation learning

Self-supervised learning (extract pseudo-supervision from data)
Semi-supervised learning (unsupervised + supervised)
Weakly-supervised localization (training images with labels only)
Zero-shot learning (novel classes based on auxiliary knowledge)
Few-shot learning (learning from few examples)
Partially-supervised learning (learning from few examples)

Talk overview

SESSION 1
Lecture

Modern deep generative models
for unsupervised learning

For more material:
METU CENG 796
Deep Generative Models

Gokberk Cinbis - 2020 13

https://user.ceng.metu.edu.tr/~gcinbis/courses/Spring20/CENG796/index.html

Talk overview

SESSION 1 SESSION 2
Lecture Research
Modern deep generative models ® Zero-shot learning with
for unsupervised learning generative & discriminative
models
For more material:
METU CENG 796 ® Partially supervised domain
Deep Generative Models transfer

o Q/A

Gokberk Cinbis - 2020 14

https://user.ceng.metu.edu.tr/~gcinbis/courses/Spring20/CENG796/index.html

Session |

An overview of contemporary generative models

Gokberk Cinbis - 2020 15

Learning a generative model

@ We are given a training set of examples, e.g., images of dogs

d(P gatar Py)

Pdata

0eM

Model family

@ We want to learn a probability distribution p(x) over images x such that

@ Generation: If we sample Xpen ~ p(x), Xnew should look like a dog
(sampling)

@ Density estimation: p(x) should be high if x looks like a dog, and low
otherwise (anomaly detection)

© Unsupervised representation learning: We should be able to learn
what these images have in common, e.g., ears, tail, etc. (features)

@ First question: how to represent p(x). Second question: how to learn it.
Slide by Stefano Ermon, Aditya Grover

Coverage

Auto-regressive models Variational latent models

po(x) = Hi\; po(xi|x<i) po(x fpe (x,2)dz

Normalizing flow models

of. 1 (x
px(xi6) = pa(; () |det (o)))

GANs

min max V(Go, Dy) = Ex-p,.. 108 Do (x)] + Ey-p(0)l08(1 — Ds(Go(2)))

Slide by Emre Akbas
Gokberk Cinbis - 2020 17

Auto-regressive models

Gokberk Cinbis - 2020 18

Recap: Bayesian networks vs neural models

@ Using Chain Rule

p(x1, X2, x3,x4) = p(x1)p(x2 | x1)p(x3 | x1, x2)P(xa | X1, %2, X3)
Fully General, no assumptions needed (exponential size, no free lunch)
@ Bayes Net
p(x1,x2,x3,Xa) = pcpr(X1)pcpT (X2 | X1)pcpT (X3 | X1, X2)pepT(Xa | X1, X2%3)

Assumes conditional independencies; tabular representations via conditional
probability tables (CPT)

@ Neural Models
p(X17X27X37X4) ~ P(Xl)P(XQ | Xl)pNeural(X3 | X17X2)pN0ural(X4 | X1’X27X3)

Assumes specific functional form for the conditionals. A sufficiently deep
neural net can approximate any function.

Slide by Stefano Ermon, Aditya Grover

Motivating Example: MNIST

e Given: a dataset D of handwritten dlglts (bmarlzed MNIST)

@ Each image has n =28 x 28 = 784 pixels. Each pixel can either be
black (0) or white (1),

@ Goal: Learn a probability distribution p(x) = p(x1,- - , x784) over
x € {0,1}78* such that when x ~ p(x), x looks like a digit

@ Two step process:

@ Parameterize a model family {py(x), 0 € ©}
© Search for model parameters 6 based on training data D

Slide by Stefano Ermon, Aditya Grover

Autoregressive Models

@ We can pick an ordering of all the random variables, i.e., raster scan
ordering of pixels from top-left (Xi) to bottom-right (X,=7s4)

@ Without loss of generality, we can use chain rule for factorization
p(x1, -+, x78a) = p(x1)p(xa | x1)p(xs | x1,%2) -+ p(Xn | X1, Xn—1)

@ Some conditionals are too complex to be stored in tabular form. Instead, we
assume

p(x1, -, x8a) = Pepr(X1;) Progit (X2 | X1; @) Progic (X3 | X1, x0; @) - -
plogit(xn | X1, 3 Xn—1, an)

@ More explicitly
] PCPT(XI =].; al) = al, p(X1 — 0) =1- al
o Pogit(Xo = 1| x1;0?) = o(ad + atx)
o Plogit(X3 = 1| x1,x0; o) = o(ad + ajxy + a3x)
@ Note: This is a modeling assumption. We are using parameterized

functions (e.g., logistic regression above) to predict next pixel given all the

previous ones. Called autoregressive model.
Slide by Stefano Ermon, Aditya Grover

NADE: Neural Autoregressive Density Estimation

Hugo Larochelle, lain Murray
The Neural Autoregressive Distribution Estimator
AISTATS 2011

@ To improve model: use one layer neural network instead of logistic regression
h, = O’(A,'X<,' + C,')
Xi = p(xi|x1, -+, xi—1: A, €y e, by) = a(agh; + b;)
—o——

parameters

@ For example h, = ¢ (f)xl-l-(f) hs =0 ()(ié)-l-()
NP —— ~~

Az o) A3 a3
Slide by Stefano Ermon, Aditya Grover

MADE: Masked Autoencoder for Distribution Estimation

p(xz)
pxy]xz,x3) pxs)x;)

Autoencoder X Masks MADE

© Challenge: An autoencoder that is autoregressive (DAG structure)

@ Solution: use masks to disallow certain paths (Germain et al., 2015).
Suppose ordering is xo, X3, X1.

® The unit producing the parameters for p(x;) is not allowed to depend
on any input. Unit for p(x3|x2) only on x,. And so on...

@ For each unit in a hidden layer, pick a random integer / in [1, n — 1].
That unit is allowed to depend only on the first i inputs (according to
the chosen ordering).

© Add mask to preserve this invariant: connect to all units in previous

layer with smaller or equal assigned number (strictly < in final layer)
Slide by Stefano Ermon, Aditya Grover

RNN: Recurrent Neural Nets

Challenge: model p(x¢|x1.t—1;). “History” xj.;_1 keeps getting longer.
Idea: keep a summary and recursively update it

Output 0¢41
Hidden hy4q
Input Xe41
Summary update rule: h,. 1 = tanh(Wpph: + Wipxei1)
Prediction: o;y1 = Wy hi g

Summary initalization: hg = by

© Hidden layer h; is a summary of the inputs seen till time t

@ Output layer o;_1 specifies parameters for conditional p(x; | x1:t—1)

@ Parameterized by by (initialization), and matrices Whp, Win, Wh,, .
Constant number of parameters w.r.t n! Slide by Stefano Ermon, Aditya Grover

Pixel RNN (Oord et al., 2016)

©@ Model images pixel by pixel using raster scan order

@ Each pixel conditional p(x; | x1.+_1) needs to specify 3 colors

P(Xt | Xl:t—l) — p(Xtred | Xth_l)p(XiLgreen | Xth_l’Xtred)p(thlue ‘ Xth_l’xtred’ threen)

and each conditional is a categorical random variable with 256 possible
values

© Conditionals modeled using RNN variants. LSTMs + masking (like MADE)

Mask B

Mask A

Context R G B
Slide by Stefano Ermon, Aditya Grover

Pixel RNN

occluded completions original

.. - | --
i 4 n

Results on downsampled ImageNet. Very slow: sequential likelihood
evaluation.

Slide by Stefano Ermon, Aditya Grover

PixelCNN (Oord et al., 2016)

Idea: Use convolutional architecture to predict next pixel given context (a

neighborhood of pixels).
Challenge: Has to be autoregressive. Masked convolutions preserve raster scan

order. Additional masking for colors order.

OO0O0OO0O0
COO00O0

OO @® OO masked convolution
o s
1111
< .-~ Blind spot
0100

Slide by Stefano Ermon, Aditya Grover

Pixel CNN

BN - B
e iﬁh&‘ﬂﬁﬁﬂl

Samples from the model trained on Imagenet (32 x 32 pixels). Similar
performance to PixelRNN, but much faster.

Slide by Stefano Ermon, Aditya Grover

Summary of the auto-regressive models

© Autoregressive models:

e Chain rule based factorization is fully general
o Compact representation via conditional independence and/or neural
parameterizations

© Autoregressive models Pros:
e Easy to evaluate likelihoods
e Easy to train

© Autoregressive models Cons:

e Requires an ordering
e Generation is sequential
e Cannot learn features in an unsupervised way

Latent variable models

Latent Variable Models: Motivation

© Lots of variability in images x due to gender, eye color, hair color,
pose, etc. However, unless images are annotated, these factors of
variation are not explicitly available (latent).

@ Idea: explicitly model these factors using latent variables z

Slide by Stefano Ermon, Aditya Grover

Latent Variable Models: Motivation

() Ethnicity

X

Image X

© Only shaded variables x are observed in the data (pixel values)

@ Latent variables z correspond to high level features

o If z chosen properly, p(x|z) could be much simpler than p(x)
e If we had trained this model, then we could identify features via
p(z | x), e.g., p(EyeColor = Blue|x)

© Challenge: Very difficult to specify these conditionals by hand

Slide by Stefano Ermon, Aditya Grover

Deep Latent Variable Models

Q@ z~ N(0,1)
Q p(x|z) =N (ug(z),Xo(z)) where ug,Xg are neural networks

© Hope that after training, z will correspond to meaningful latent
factors of variation (features). Unsupervised representation learning.

© As before, features can be computed via p(z | x)

Slide by Stefano Ermon, Aditya Grover

Mixture models

Combine simple models into a more complex and expressive one

— k)N (X 1k, T

-

component

Slide by Stefano Ermon, Aditya Grover

Variational Autoencoder

A mixture of an infinite number of Gaussians:
Q@ z~ N(0,1)
Q p(x|z) =N (ug(z),Xo(z)) where pg,Xy are neural networks

@ Even though p(x | z) is simple, the marginal p(x) is very
complex/flexible

Slide by Stefano Ermon, Aditya Grover

Variational Autoencoder Marginal Likelihood

X

A mixture of an infinite number of Gaussians:
Q@ z~ N(0,1)
@ p(x|z) =N (ug(z),XLo(z)) where up, Xy are neural networks
© Z are unobserved at train time (also called hidden or latent)
@ Suppose we have a model for the joint distribution. What is the
probability p(X = X; #) of observing a training data point x?

/p(X =X,Z=12;0)dz = /p()‘(,z; 0)dz

z z
Slide by Stefano Ermon, Aditya Grover

First attempt: Naive Monte Carlo

Likelihood function py(x) for Partially Observed Data is hard to compute:

po(x)= > p(xz2)=|2]) |Z|P0(X ,2) = | Z|Ew Uniform(2) [Po (X, 2)]
All values of z zeZ

We can think of it as an (intractable) expectation. Monte Carlo to the rescue:
@ Sample zW, ... z(K uniformly at random

@ Approximate expectation with sample average

k
1)
E po(x,2) ~ |Z|; E pg(x,z(f))
r4 j:l

Works in theory but not in practice. For most z, py(x,z) is very low (most
completions don't make sense). Some are very large but will never "hit" likely
completions by uniform random sampling. Need a clever way to select zU) to
reduce variance of the estimator.

Slide by Stefano Ermon, Aditya Grover

Evidence Lower Bound

Log-Likelihood function for Partially Observed Data is hard to compute:

log (Zezz; po(x,z) = log (ZGZ; q()po(x z)) = log (EZNq (2) [Peq(ztz)z)])

@ log() is a concave function.

|Og (]EZNq(Z) [f(Z)])

log

A

log(px + (1 — p)x’) > plog(x) + (1 — p) log(x").
@ ldea: use Jensen Inequality (for concave functions)

= log (Z q(z)f (Z)) > q(z)log f(2)

z

f(z,) f(z,)
Slide by Stefano Ermon, Aditya Grover

Variational learning

marginal likelihood

en—!i-l 977. - eﬁ(

and L(x; 0, ¢2) are both lower bounds. We want to jointly optimize 6 and

¢

Slide by Stefano Ermon, Aditya Grover

Learning Deep Generative models

Dog
Running

Alice Frisbee Bob

Grass

© Alice goes on a space mission and needs to send images to Bob.
Given an image x’', she (stochastically) compresses it using
2 ~ q,(z|x') obtaining a message 2. Alice sends the message Z to Bob

@ Given 2, Bob tries to reconstruct the image using p(x|Z; 6)

o This scheme works well if Eg_) [log p(x|z; 0)] is large

o The term Dk (q4(z|x)||p(z)) forces the distribution over messages to
have a specific shape p(z). If Bob knows p(z), he can generate
realistic messages Z ~ p(z) and the corresponding image, as if he had

received them from Alice! , ,
Slide by Stefano Ermon, Aditya Grover

@ Latent Variable Models Pros:

e Easy to build flexible models

e Suitable for unsupervised learning
@ Latent Variable Models Cons:

e Hard to evaluate likelihoods

e Hard to train via maximum-likelihood

o Fundamentally, the challenge is that posterior inference p(z | x) is hard.
Typically requires variational approximations

@ Alternative: give up on KL-divergence and likelihood (GANs)

Slide by Stefano Ermon, Aditya Grover

Normalizing Flows

Recap of likelihood-based learning so far:

d(P gatar Po)

Pdata

OeM

Model family

@ Model families:
o Autoregressive Models: py(x) = []7_; po(xi|x<i)
o Variational Autoencoders: py(x) = [py(x,z)dz
@ Autoregressive models provide tractable likelihoods but no direct
mechanism for learning features

e Variational autoencoders can learn feature representations (via latent
variables z) but have intractable marginal likelihoods

o Key question: Can we design a latent variable model with tractable
likelihoods? Yes!

Slide by Stefano Ermon, Aditya Grover

Simple Prior to Complex Data Distributions

@ Desirable properties of any model distribution:
e Analytic density
e Easy-to-sample
@ Many simple distributions satisfy the above properties e.g., Gaussian,
uniform distributions
@ Unfortunately, data distributions could be much more complex
(multi-modal)
e Key idea: Map simple distributions (easy to sample and evaluate
densities) to complex distributions (learned via data) using change of
variables.

Slide by Stefano Ermon, Aditya Grover

Normalizing flow models

@ Consider a directed, latent-variable model over observed variables X
and latent variables Z

@ In a normalizing flow model, the mapping between Z and X, given

by fy : R" — R”, is deterministic and invertible such that X = fy(2)
and Z = f, 1(X)

@ Using change of variables, the marginal likelihood p(x) is given by

w (19)

@ Note: x,z need to be continuous and have the same dimension.
Slide by Stefano Ermon, Aditya Grover

px(x;0) = pz (F,(x))

Planar flows (Rezende & Mohamed, 2016)

@ Base distribution: Gaussian

Oleko

e Base distribution: Uniform

I ANANS

@ 10 planar transformations can transform simple distributions into a
more complex one

Unit Gaussian

Uniform

Slide by Stefano Ermon, Aditya Grover

Learning and Inference

@ Learning via maximum likelihood over the dataset D

det (—8%;(()()) (

e Exact likelihood evaluation via inverse tranformation x — z and
change of variables formula

meaxlog px(D;0) = Z log pz 1(x)) + log
xeD

e Sampling via forward transformation z — x

E z~ pz(z) x="fy(2) [W

e Latent representations inferred via inverse transformation (no
inference network required!)

Slide by Stefano Ermon, Aditya Grover

Designing invertible transformations

@ NICE or Nonlinear Independent Components Estimation (Dinh et al.,
2014) composes two kinds of invertible transformations: additive
coupling layers and rescaling layers

@ Real-NVP (Dinh et al., 2017)
@ Inverse Autoregressive Flow (Kingma et al., 2016)

@ Masked Autoregressive Flow (Papamakarios et al., 2017)

Slide by Stefano Ermon, Aditya Grover

Summary of Normalizing Flow Models

@ Transform simple distributions into more complex distributions via
change of variables

@ Jacobian of transformations should have tractable determinant for
efficient learning and density estimation

@ Computational tradeoffs in evaluating forward and inverse
transformations

Slide by Stefano Ermon, Aditya Grover

Generative Adversarial Networks

Autoregressive models
Normalizing Flows
Latent Variable Models, VAEs

All these models are likelihood-based.

Now GANSs: focus on sample quality, directly.

Implicit Models

m Sample z from a fixed noise source distribution
(uniform or gaussian).

m Pass the noise through a deep neural network
to obtain a sample x.

m Sounds familiar? Right:

s Flow Models
= VAE

m What’s going to be different here?

m Learning the deep neural network without explicit
density estimation

Slide originally by Pieter Abbeel, Peter Chen,
Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan

56

Motivation for GANs

lan Goodfellow ™
; @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

4:40 PM - Jan 14, 2019 - Twitter Web Client

1.4K Retweets 3.8K Likes

Slide originally by Pieter Abbeel, Peter Chen,
Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan

Motivation for GANs

lan Goodfellow ™
y @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

2 5ot S <
[BigGAN, Brock,
Donahue, Simonyan,
2018]

4:40 PM - Jan 14, 2019 - Twitter Web Client

1.4K Retweets 3.8K Likes

Slide originally by Pieter Abbeel, Peter Chen,
Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan

Motivation for GANs

e lan Goodfellow
; @goodfellow_ian

4.5 years of GAN progress on face generation.
arxiv.org/abs/1406.2661 arxiv.org/abs/1511.06434
arxiv.org/abs/1606.07536 arxiv.org/abs/1710.10196
arxiv.org/abs/1812.04948

=0

2014 2015

[BigGAN, Brock,
Donahue, Simonyan,
2018]

R R R R T A A T DT
2016 —= = = = 7

4:40 PM - Jan 14, 2019 - Twitter Web C|

1.4K Retweets 3.8K Likes

i e e e Ao ey

10/25/2018 Sold at Christies for $432,500

Slide originally by Pieter Abbeel, Peter Chen,
Jonathan Ho, Aravind Srinivas, Alex Li, Wilson Yan

Core GAN formulation

D(x) tries to be
near 1

D tries to make
D(G(z)) near 0,
G tries to make
D(G(z)) near 1

f

D

f

z sampled from
model

i

Differentiable
function G

?

Input noise z

f

Differentiable
function D

@ sampled from
data

N2 N N
NN N

U

Figure from NeurlPS 2016
GAN Tutorial (Goodfellow)

What G() does (original) GAN optimize after all?

e Assume that D() is Bayes-optimal, then:

V(G, D*) = Eqnpay, [log D* ()] + Eqnp, [log(1 — D*(2))]

pdata(x) :| |: pg(x) :|
=Espiu. |10 + Epnp, |10
Pa [gpdata(mpg(w) Po | %% Diaa(®) + py (@)

T +
= —log(4) + KL <pdataH (W)) LKL (ng (pdata2 pg))

~
(Jensen-Shannon Divergence (JSD) of pgata and pgy) > 0

What G() does (original) GAN optimize after all?

e Assume that D() is Bayes-optimal, then:

V(G, D*) = Eqnpay, [log D* ()] + Eqnp, [log(1 — D*(2))]

Pdata (x) + Py

py()]

pdata(x) :| |:
=Espiu. |10 + Epnp, |10
s [& (@) Py | %8 (@) + Py (@)

) (e (M)

Probability Density

|
— —tog(4) + KL (paa | (2222 FP2

-~~~

(Jensen-Shannon Divergence (JSD) of pgata and pgy) > 0

q" = argmin,Dxr.(p||q)

— p(x)
- q"(x)

Maximum likelihood

Probability Density

q" = argmin, Dxr(q||p)

D — p(x)
\ *
| \ - ¢ (x)

Reverse KL

Advances in GANs

e Many, many applications (image
manipulation, style transfer, guided
image generation, etc.)

e Better architectures (eg, StyleGAN),
better loss functions (eg, Wasserstein
GAN), better regularization
techniques (eg, Spectral Norm), better
conditioning techniques (eg,
Projection Discriminator)

StyleGAN v2
Karras et al 2019

Open problems in GANs

e Better modeling of complex scenes
e Improving training stability
e Improving sample quality

e Better use in representation-learning

e We have very briefly summarized: auto-regressive
models, normalizing flows, VAEs, GANs

e There are several other important ones, such as
Energy-based models, hybrid models, moment-matching
networks, etc.

e The search for more principled, more stable,
representation-inferring, high-quality sample
generating models continues!

TESEKKURLER

