Bioinformatics A Communication/Signal Processing Perspective

Khalid Sayood **Occult Information Lab Department of Electrical and Computer** Engineering **University of Nebraska-Lincoln**

Outline

- Beginning
- Middle
- End

My roots

- Signal Processing
- Communication
- Information Theory
- Data Compression

My roots

- Data Compression The art or science of finding compact representations of information in data
 - Speech → Images → Video → DNA

Definitions of Bioinformatics

Original definition: Study of informatic processes in biotic systems – Pauline Hogeweg and • **Ben Hesper**

Definitions of Bioinformatics

- Original definition: Study of informatic processes in biotic systems Pauline Hogeweg and Ben Hesper
- Bioinformatics is conceptualizing <u>biology in terms of molecules</u> (in the sense of physicalchemistry) and then applying <u>"informatics" techniques</u> (derived from disciplines such as applied math, CS, and statistics) to understand and <u>organize the information associated</u> with these molecules, <u>on a large-scale</u>. (Mark Gerstein, 1999)

Bioinformatics is a management and analysis information system for life sciences.

Data Storage and Management

Data Analysis

Protein Structure Prediction

- •Protein/RNA tertiary structure
- •Docking
- •Drug Design

Molecular Sequence Analysis

- Homology Search
- Phylogeny Construction
- Whole Genome
- Sequencing
- Gene Finding

• Microarrays • Biomarker Discovery

Functional Genomics and **Proteomics**

Systems Biology

- •Pathways
- •Network based
- wholistic approach

From RNA-seq reads to differential expression results Alicia Oshlack, Mark D Robinson and Matthew D Young

Genome Biology2010**11**:220

Preprocessing: FastQC Trimmomatic Indexing the Reads: Bowtie 2 Aligning to hg19/KSHV TopHat 2 Local alignment **Extracting Features** CuffDiff P < 0.01 **FPKMs** values **Differentially Expressed Genes**

Apache Taverna

Wageningen University and Research

So what is the problem?

• What is actually going on.

Is there hope (for me)?

Hope springs eternal

Digital Camera (1975)

Genome Sequencer (2018)

What do we mean by a Communication Theory Perspective

What do III I mean by a Communication Theory Perspective

Information exists in the form of a stochastic process

How do we deal with stochastic processes?

- Look at the signal using different basis sets frequency domain processing.
- Look at correlation structures.
- Look at models.

All these involve averaging of some sort

All these result in the discovery of underlying structure

They can also result in dimensionality reduction.

Realizations of a stochastic process

14000 16000

Frequency profile

Statistical Profile

Models

GAGACATTCAGTG

GAGACATTCAGT

	G	A	G	A	С	A	Τ	Τ	С	A	G	
A	0	1	0	1	0	1	0	0	0	1	0	
С	0	0	0	0	1	0	0	0	1	0	0	0
G	1	0	1	0	0	0	0	0	0	0	1	0
Τ	0	0	0	0	0	0	1	1	0	0	0	1

Identification of Protein Coding Regions Using the Modified Gabor-Wavelet Transform

Mena-Chalco et al. IEEE/ACM Trans. Comp. Bio

G	Α	G	A	С	Α	Τ	Τ	С	A	G	Τ	G
---	---	---	---	---	---	---	---	---	---	---	---	---

AA	AC	AG	AT	CA	СС	CG	СТ	GA	GC	GG	GT	TA	TC	TG	TT
0	1	2	1	2	0	0	0	2	0	0	1	0	1	1	1

 $I_{k} = \sum_{X \in A} \sum_{Y \in A} p_{k}(X, Y) \log \left(\frac{p_{k}(X, Y)}{p(X)p(Y)} \right)$ k=6 GLALCLAL <u>k=14</u>

AMI Profile for Human Chromosome 1

Human chromosomes

Mouse Chromosome

C. Elegans Chromosome

Average Mutual Information Average Mutual Information Average Mutual Information 3 2 0 5 з 2 0 З 2 0

Nebraska Lincoln

a) C. Elegans Chromosomes

b) S. Cerevisae Chromosomes

0.022

0.02

30

- Phylogeny for *Candida* and *Saccharomyces* clades based on multiple sequence alignment of 706 orthologous genes
- Posterior probabilities shown
- WGD: Whole Genome Duplication

0.1 substitutions per site

- Ribosomal DNA (rDNA) is commonly used to evaluate species relatedness
- The rDNA gene complex contains 3 genes, each of which are ribosomal components once transcribed
- Internal transcribed spacer (ITS) 1 and ITS2 separate these genes
- ITS regions have 2 benefits:
 - 1. Easy to design primers (ribosome genes highly conserved, many copies)
 - 2. Spacers diverge more quickly than ribosome genes

- Distance matrix D generated by calculating pairwise distance d_{ii} between AMI profiles \mathbf{x}_i and \mathbf{x}_i
- Distance defined in two ways: \bullet
 - 1. Correlation distance (angle between profiles)

$$d_{ij} = 1 - \cos\theta = 1 - \frac{1}{\|x\|}$$

Euclidean distance 2. $d_{ij} = \|\boldsymbol{x}_i - \boldsymbol{x}_j\|$

Phylogenetic trees generated using PHYLIP (neighbor joining)

 $x_i \cdot x_i$ $x_i \parallel \parallel x_i \parallel$

10	20	30	
TG	CCCTTTGTACA	CACCGCCCGI	CGC
AAGAAATTTAA	TAATTGGGTCG	AATCG	
AAG		TTTTG	F
AAG	AAATTTAATAA	TTTTG	
AAG	 АААТТТААТАА	CG	
	AAGATT	ATGAA	
		CCG	
		CCG	
		CCG	
		CCG	
		CCG	

Y.lipolytica S.castellii A.gossypii S.bayanus S.mikatae S.cerevisiae S.paradoxus K.lactis C.glabrata D.hansenii C.lusitaniae C.parapsilosis L.elongisporus C.tropicalis C.albicans C.dubliensis

Y.lipolytica S.castellii A.gossypii

0.2

GO Prediction

"High Abundance" GO terms

BP: Biological Processes, CC: Cellular Component, MF: Molecular Function

"Low Abundance" GO terms

		-						V		-			
M	D	C	S	Ι	N	A	N	Q	Μ	K	L	G	Η
M	R	C	S	Т	M	D	N	Q	Μ	N	L	G	R
M	D	G	S	E	N	A	K	Η	Ι	K	L	D	Q
M	Q	C	S	Ι	N	A	N	Η	K	K	F	G	Q
M	D	G	S	Ι	N	A	N	Q	K	Ι	L	G	Η
M	E	C	S	E	N	A	K	R	Μ	K	S	G	Η
M	D	C	S	Ι	N	A	Ν	Q	Ι	K	F	A	Q
M	D	W	S	Ι	N	A	Ν	Η	M	K	L	D	R
M	E	C	S	Ι	N	A	N	Q	R	N	L	G	Η
M	D	C	S	E	N	A	K	Y	Ι	K	L	A	Q
M	D	G	S	Ι	N	A	N	Q	M	N	F	G	Η
M	D	C	F	Ι	R	S	K	Η	L	K	L	G	Η
M	E	W	S	I	N	A	N	Q	M	Q	L	D	Y

ķ

Slow progressor populations

1449

Rapid progressor populations

2617

Metagenomics

Learn channel statistics to estimate true abundance given the observed detection.

 $|G_i \cap G_i|$ $p_{i,j}$ $|G_i|$

RRMSE for the simulated metagenomes corresponding to a mixture of 10, 20, 50, and 100 randomly selected organisms for 0.01X and 0.1X average genome coverages.

RAlphy

Metaphyler

Taxy

MIMOSA

Megan

AB **INFORMATION** BIOINFORMATICS **L** J U U U L L

Mark Bauer

Hasan Otu

David Russell

Garin Newcomb

Amirsalar Mansouri

Dicle Yalcin

Ufuk Nalbantoglu

Sam Way

Keith Murray

Jacob Bohac

ONCE, I THOUGHT I WAS MPONG BUT IT TURNS OUT...I WAS

