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1. Algorithmic infrastructure for genomics

*  mapping, indexing, compression of big omic data to accommodate 250M
human genomes to be sequenced by 2030

2. Interpretation of genomic sequence data to resolve the sequence

composition of repetitive genomic loci (e.g. immunoglobulin heavy
locus, pharmacogenes)

3. Large scale (expressed) genomic alteration detection in heterogeneous
tumor samples and tumor evolution modeling

Cancer network discovery and (rare) cancer driver prioritization
The role of IncRNA based regulation in tumor emergence or progression
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Integrative inference of (sub)clonal tumor
evolution from bulk and
single-cell sequencing data
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Clonal theory of cancer evolution
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Time of clinical
diagnosis

Computational problems in intro-tumor heterogeneity

1. Number of distinct cancer 2. For each population set 3. Tumor purity and cancer cell 4. Tumor evolutionary
cell populations of mutations it harbors fraction of each population tree

30 O O ® @ @ Tumor purity: 0.86 *
®© @ D o v

0.25 0.17 0.58



Clonal theory of cancer evolution

time

Number of cells Nowell PC, Science 1976



Tree of tumor evolution

Healthy cells 15%

;= {M,M,,..}

Set of mutations providing

selective advantage Cancer-driving

mutations

First cancer cells

10%

time - Subclonal
mutations
Subclonal population 35%
M 20% 20%

Number of cells



Deciphering tumor evolution and subclonal composition

1. Sequencing
2. Mutation calling
3. Tree inference




Studying tumor evolution by the use of bulk sequencing data
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Studying tumor evolution by the use of bulk sequencing data

Mutation Var.reads Ref.reads (Avg)CN
M1 820 1100 2
‘ M2 324 3700 4
sequencing and M3 1215 2800 3
mutation calling
Software Year Reference  Phylogeny M“mp e Inference
samples
TrAp 2013 [37] Y N Exhaustive search
Clomial 2014 [31] N Y Binomial / EM
PhyloSub 2014 [32] Y Y Tree-structured stick-breaking / MCMC
PyClone 2014 [38] N Y Dirichlet process, beta-binomial / MCMC
RecBTP 2014 [39] p'é N Approximation algorithm
SciClone 2014 [40] N N Beta mixture model
AncesTree 2015 [41] Y Y Optimisation / MILP
CITUP 2015 [42] Y Y Optimisation / QIP
LICHeE 2015 [43] Y Y Heuristic
BayClone 2015 [44] N Y Gibbs sampling / Metropolis-Hastings
CTPsingle 2016 [45] W% N Dirichlet process, beta-binomial / MCMC —
Cloe 2016 [46] Y Y Metropolis-coupled MCMC
CHAT 2014 [54] N N Dirichlet process Gaussian mixture model / MCMC
CloneHD 2014 [55] N Y HMM / local optimisation
SubcloneSeeker 2014 [56] Y Y Exhaustive enumeration
PhyloWGS 2015 [58] X Y Tree-structured stick-breaking / MCMC
SCHISM 2015 [57] Y Y Likelihood ratio tests / genetic algorithm
SPRUCE 2016 [59] Y Y Exhaustive enumeration
CANOPY 2016 [60] Y Y MCMC

Kuipers et al., BBA-Reviews on Cancer,2017



Studying tumor evolution by the use of bulk sequencing data

Mutation Var.reads Ref.reads (Avg)CN
M1 820 1100 2
‘ M2 324 3700 4
sequencing and M3 1215 2800 3
mutation calling
Software Year Reference Phylogeny Multiple Inference
samples
TrAp 2013 [37] Y N Exhaustive search
Clomial 2014 [31] N Y Binomial / EM
PhyloSub 2014 [32] Y Y Tree-structured stick-breaking / MCMC
PyClone 2014 [38] N Y Dirichlet process, beta-binomial / MCMC
RecBTP 2014 [39] ' N Approximation algorithm
SciClone 2014 [40] N N Beta mixture model 3 5%
AncesTree 2015 [41] Y Y Optimisation / MILP
CITUP 2015 [42] Y Y Optimisation / QIP
LICHeE 2015 [43] Y Y Heuristic
BayClone 2015 [44] N Y Gibbs sampling / Metropolis-Hastings
CTPsingle 2016 [45] W% N Dirichlet process, beta-binomial / MCMC —
Cloe 2016 [46] Y Y Metropolis-coupled MCMC
CHAT 2014 [54] N N Dirichlet process Gaussian mixture model / MCMC
CloneHD 2014 [55] N Y HMM / local optimisation
SubcloneSeeker 2014 [56] Y Y Exhaustive enumeration (o)
PhyloWGS 2015 [58] X Y Tree-structured stick-breaking / MCMC 20 A) 20%
SCHISM 2015 [57] Y Y Likelihood ratio tests / genetic algorithm
SPRUCE 2016 [59] Y Y Exhaustive enumeration
CANOPY 2016 [60] Y Y MCMC

Kuipers et al., BBA-Reviews on Cancer,2017



CTPsingle: Clustering of mutations based on read counts

M; = heterozygous SNV from diploid region X-axis: 100 - 2 - VAF
307 Y-axis: number of mutations with
t; =total number of reads covering genomic position of M; value of 100-2-VAF equal to
25 the corresponding value at x-axis

: ti
= total number of cells in the sample ~ EL

20 A

v; = total number of reads supporting M; .|
= total number of cells harboring M; is ~ v;

10 A

Expected fraction of cells harboring M;

v, 2v;
t_‘ = =2.VAF(M,) | P |
L ti 0 20 40 60 80 100
2
THE MAIN ASSUMPTIONS: Clusterl 10%
(0}

1. Mutations having similar 2 - VAF (M;) occur for the first
time at the same cellular population. Cluster 2 30%
2. The existence of clusters of mutations with similar 2 - VAF's. Cluster 3 559

* * #*




Clustering ambiguity: subclones with similar cellular prevalence

So6l * o= clustered 80%
together

150 A

——

Clustering

—) * %

Tree and subclonal
freq. inference N/

20%
kK

mutational counts

50 1

True tree o 20 40 60 30 100 Inferred solution

1.

2.

During the clustering step mutations emerging at subclonal populations with similar cellular prevalence are
clustered together

Inaccurate clustering influences the inference of subclonal prevalences and tree of tumor evolution




Phylogeny inference ambiguity: multiple equally likely trees

Clusterl 10% x 1. Linear (chain) topology is usually among solutions
Cluster 2 30% x 2. In many cases, in addition to linear topology, we
Cluster 3 550 ¥ also have other solutions with score equal to 0.

W @@




Time Series Liquid Biopsy Data Can Help

e 12 patients sequenced at three time points of interest
* Baseline, On-Treatment (12-weeks), and Progression
 Sensitively obtain mutation calls (through SiNVICT)

* For each mutation, check:
 whether treatment has eliminated subclones,
 whether new and more aggressive subclones emerged



ime Series Liquid Biopsy Data Can Help
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Studying tumor evolution by the use of single-cell sequencing (SCS) data

mut\cell celll cell2

M1 1 0
sequencing and M3 1 NA

Q mutation calling




Studying tumor evolution by the use of single-cell sequencing (SCS) data

mut\cell celll cell2
M1 1 0
‘ M2 0 1
sequencing and M3 1 NA
Q mutation calling
Name of method Authors Journal Year
Kim and Simon BMC Bioinformatics 2013
BitPhylogeny Yuan et al. Genome Biology 2015
OncoNEM Ross & Markowetz | Genome Biology 2016
SCITE Jahn et al. Genome Biology 2016
SiFit Zafar et al. Genome Biology 2017

Clonal tree

Mutation tree



Single-cell sequencing data
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SINGLE-CELL ISOLATION
 Doublets

Q
[ é) } e Subclones with zero sampled cells
x

* Non-uniform sampling




Single-cell sequencing data

1. DNA extraction . cells zc:(
2. DNA amplification
Single cell @ @ O 3. DNA sequencing n mut. ‘
isolation 4. mutation calling M, 1 NA 1
E— ey S IV N I
M, 0 1 1
0 1

| @208 | =

SINGLE-CELL ISOLATION
- * Doublets
e Subclones with zero sampled cells
* Non-uniform sampling

DNA AMPLIFICATION
 Amplification errors (false positives)
* Unequal amplification (false negatives, NAs)

DNA SEQUENCING AND MUTATION CALLING
* False positives




Single-cell sequencing data

1. DNA extraction

2. DNA amplification
Single cell @ @ O 3. DNA sequencing
isolation

4. mutation calling

== @O ® =

®®0®

m cells

M, 1 NA 1
M, 0 0 1
M; 0 1 1

SINGLE-CELL ISOLATION

* Doublets

e Subclones with zero sampled cells
* Non-uniform sampling

DNA AMPLIFICATION
 Amplification errors (false positives)
* Unequal amplification (false negatives, NAs)

DNA SEQUENCING AND MUTATION CALLING
* False positives

Main types of noise in SCS data

1. False positive (FP)
usually < 107°

2. False negative (FN)
in the range 0.1 — 0.3

3. Missing entries (NA)
varies between 0.05-0.50

4. Doublets
varies between 0 and 0.30




Tree inference by the use of SCS data - overview

C1 C, Cs Cy Cs Cs C; Cg Cy
M, 0 0 1 1 1 1 1 0 1
M, NA 1 1 1 1 0 1 1 0
M5 0 0 1 1 1 1 1 0 1
M, 0 1 1 1 1 1 0 1 1 O
My 0 1 0 1 1 1 1 1 1
Mg 0 0 0 NA 1 1 0 0 0 >
M, 0 0 0 1 1 0 0 0 0
Mg 0 0 NA 0 0 0 1 1 0
M, 0 0 0 0 0 0 1 1 0
My, 1 0 0 0 0 0 NA 1 1
D, «m — single-cell data mutation matrix (T, 0)
n — number of mutations T — tree topology
m — number of cells 0= (p)

a — false positive rate
f — false negative rate
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Advantages of combining bulk and SCS data

Bulk data Single-cell data

clustered 80%
5 together *x
§ 150 A *
— - —) o
Clustering F 1001 Tree and subclonal

freq. inference

@)

] T : ; ; . Identifying branching helps in
True tree T 20 40 60 80 100 Inferred solution ying NG NePs
resolving clustering ambiguity




Advantages of combining bulk and SCS data

True tree

mutational counts

m—)

Clustering

200 4

=
w
o

100 4

50 A

Bulk data

clustered 80%
together

—) * K

Tree and subclonal

freq. inference
20 40 60 80 100 Inferred solution

True tree

Possible set of
optimal solutions

Phylogenies which are optimal
based on bulk data, but have
low support from SC data

Single-cell data

Identifying branching helps in
resolving clustering ambiguity

Many of the multiple topologies
that are equally likely based on
the bulk data have very low
support from SC data




Advantages of combining bulk and SCS data

Single-cell data

M;

True tree

| 3

M,
@ Based on SC data M, is more
likely to occur before M5

Bulk data

2 -VAF(M;) = 0.85
2-VAF(M,) = 0.75

!

From bulk data we have that it
is very likely that M, does not
occur before M5




B-SCITE — input and output

Mutation Variant reads Reference reads

M, 1100 2587

M, 804 2710

M3 537 3211

T o Tea TaTlala B-SCITE

M, 0 0 1 1 1
M, NA 1 1 1 1
M5 0 0 1 1 1

INPUT DATA REQUIREMENTS:

* SNVs from regions not affected by CNAs

* Consider only mutations present in at
least one single cell

* Targeted deep sequencing (= 1000x) of

bulk sample (T, 0)




Integrated SC and Bulk data score

Siome (T*,07) = argmax [Ssc(T,0) + Spyue(T)]

(T,0)
?

@




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed

CASE 1: New 0 is proposed

e T'=T

« 0'=(a',B") is proposed via simple Gaussian walk

+ Compute Sjoins (T, 8") = Ssc(T",8") + Sy (T")
note that computation of bulk score is not required




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed

CASE 1: New 0 is proposed

e T'=T

« 0'=(a',B") is proposed via simple Gaussian walk

* Compute Sjine(T",0") = Ssc(T',0") + Spu (T
note that computation of bulk score is not required

CASE 2: New T is proposed
« T'=propose new mutation tree




An example of proposing new mutation tree




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed

CASE 1: New 0 is proposed

e T'=T

« 0'=(a',B") is proposed via simple Gaussian walk

+ Compute Sjoins (T, 8") = Ssc(T",8") + Sy (T")
note that computation of bulk score is not required

CASE 2: New T is proposed

« T'=propose new mutation tree

e §'=6

* Compute Sjyin(T',0") = Ssc(T",0") + Spux (T')




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed

CASE 1: New 0 is proposed

e T'=T

« 0'=(a',B") is proposed via simple Gaussian walk

+ Compute Sjoins (T, 8") = Ssc(T",8") + Sy (T")
note that computation of bulk score is not required

CASE 2: New T is proposed

« T'=propose new mutation tree (steps described later)
e =06

* Compute Sjoint(T,: 0') = Ssc(T',0") + Sy (T')

2. Accept or decline proposed (T',0")

Accept the proposed (T',0") with the probability

[, a(T,61T',6")P(T",6" | D)
min ) q(T,,QI I T,Q)P(T,Q | D)




MCMC step

Current state (T, 0) 1. Propose (T',8") state

First decide whether new T or new 6 is proposed

CASE 1: New 0 is proposed
e T'=T
« 0'=(a',B") is proposed via simple Gaussian walk

‘ * Compute Sipint(T',0") = Ssc(T',0") + Spyu (T)
note that computation of bulk score is not required

CASE 2: New T is proposed

« T'=propose new mutation tree (steps described later)

- /=6
* Compute Sj,in: (T, 0") = Ssc(T',0") + Spyue (T')

2. Accept or decline proposed (T',0")

Accept the proposed (T',0") with the probability
If move accepted { q(T,0 1 T',0")P(T', 6| D)}

Hipy in{1
(T,8) - (T',0") min " q(T',0' | T,0)P(T,6 | D)




Mutation trees — clonal trees

Inferred mutation tree



Mutation trees — clonal trees

Inferred mutation tree
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ECMI1

PPP2RI1A
SYNE2
AURKA

Ground truth inferred by Wang et al. 2014: on a TNBC specimen:
three subclones inferred through hierarchical clustering of 374
mutations extracted from 144 single cell whole exome sequence data




NOTCH2 JAK1,
NOTCH3 MAP3K4,
NTRK1,AFF4,
CDH6,SETBPI,
AKAP9 MAP2K7,
ECM1

PPP2R1A
SYNE2
AURKA

Results for TNBC Patient 1 from Wang et al. 2014: Input data consists of 72 single-cells and 18 mutations.
(a) Ground truth tree from Wang et al. 2014. (b) Tree obtained by SCS data only. (c) Tree reported by B-SCITE.




PTPRQ
MYOM3
INTSS
PPIG2

BBS4
CAMSAP1
DOCK3
HIST1H2AG
RGSI11
SMOC1
ZNF540
EPHA10
TUFTI1
SERPINF2

20%

EYA4

PTPRQ
MYOM3
INTSS
PPIG2

39%

BBS4
CAMSAPI
DOCK3
HISTIH2AG
RGS11
SMOCI1
ZNF540
EPHA10
TUFT1
SERPINF2

Results for ALL Patient 1 from Gawad et al. 2014: (a) trees obtained by clustering bulk-data read counts (coverage ~ 2000).
(b) Tree obtained by SCS data only (c) Tree reported by B-SCITE. Input data consists of 111 single-cells and 20 mutations.




Conclusions

 Methods to infer clonal trees of evolution by the use of single ( ), multi-site ( ) bulk
and integrated single-cell ( ) sequencing data

* Robust to the presence of various types of noise in both types of input data
* Achieve high accuracy, including on tumors consisting of tens of subclones
 Extend to the cases with multiple bulk-sequencing data

 Qutperform existing methods on all measures of accuracy

More details: https://www.biorxiv.org/content/early/2017/12/15/234914 (Malikic et al. RECOMB 2018)

CTP-Single & CITUP available at https://github.com/nlgndnmz/CTPsingle

B-SCITE available at https://github.com/smalikic/B-SCITE



https://www.biorxiv.org/content/early/2017/12/15/234914
https://github.com/smalikic/B-SCITE

ReMixT:
Reconstructing Clone Specific
Genomic Structure

N Heterogeneous Tumor Samples
via Bulk WGS
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Segment Copy Number Change Evident in
Whole Genome Sequencing Read Depths

Tumour Sample

Whole Genome Sequence Data

Concordant Alignments == Copy Number

Read
Depth

42



Normal Contamination and Clonal Diversity
Dilute the Signal of Copy Number Changes

Tumour Sample

Normal
Colle C— )

(=)

Dommant
Tumour
Clone Cells

(=)
(— )

Subdominant
Tumour
Clone Cells

C—)

C—)

C—)_

Whole Genome Sequence Data

Concordant Alignments == Copy Number

Read
Depth
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Joint Analysis to Increase Statistical Strength for
|[dentifying Sulbclonal Copy Number Changes

Tumour Sample Whole Genome Sequence Data

Normal
Cells C_ ) Concordant Alignments == Copy Number

C— ) e
Dommant
Lo C— )
|

Clone Cells
(— )

Breakpoints
(= ) o
] ]

Subdominant C—)

Tumour
Clone Cells

Structure

o)  ——
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ReMixT: Probabllistic Genome Graph Model

Allele and clone specific copy
number model

(<)

€ )

HMM augmented with breakpoint
dependencies

A\

RO,

@

Unified state space

O(KA2) transition calculations by
exploiting symmetry

Outlier modeling

* Allele uncertainty modelling
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ReMixT: Reproducible Clonal

Dynamics in Replicate Xenografts
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ReMixT: Validation with SA501X3F
Whole Genome Single Cell

« Single cell data validates subclonal segments associated with clone

specific breakpoints
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Conclusion

 ReMix-T simultaneously infers clone specific breakpoints and
associated copy number alterations in a heterogeneous tumor
sample from bulk sequencing data.

» (Can predict breakpoint and associated subclonal frequencies

More details at: McPherson A. et al. Genome Biology 2017

Remix-T available at http://bitbucket.org/dranew/remixt.



http://bitbucket.org/dranew/remixt

Current/Future Directions

Exact solutions for SCS+Bulk HTS based on ILP and CSP instead
of MCMC

Perfect phylogeny with infinite sites model to be replaced with Dollo
parsimony

Clone specific SNV + SV + CNV composition of heterogeneous
tumor samples from integrated bulk and single cell sequencing data

The use of long read/single molecule sequencing technologies to
associate two or more breakpoints for better structural inference

Algorithms that can scale up to accommodate thousands of single
cell WGS data

Integration with liquid biopsy sequencing



