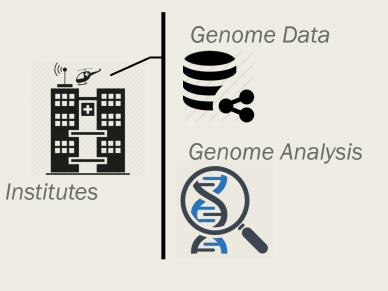
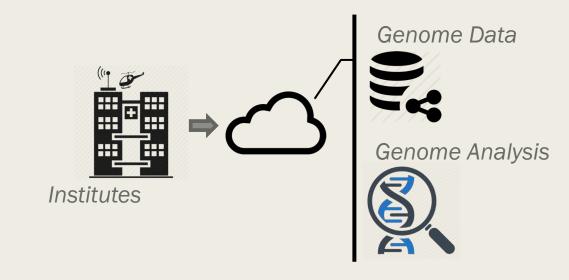
PRESAGE: PRIVACY-PRESERVING GENETIC TESTING VIA INTEL SGX

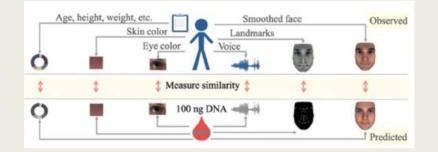

S. C. SAHINALP


BOGAZ'DA YAZ OKULU 2018

Motivation

It is becoming a big challenge to efficiently store and process the huge amount of genomic data for individual biomedical research institutions.

Cloud Computing emerges as an ideal platform for providing elastic computation and storage resources for genomic data analysis



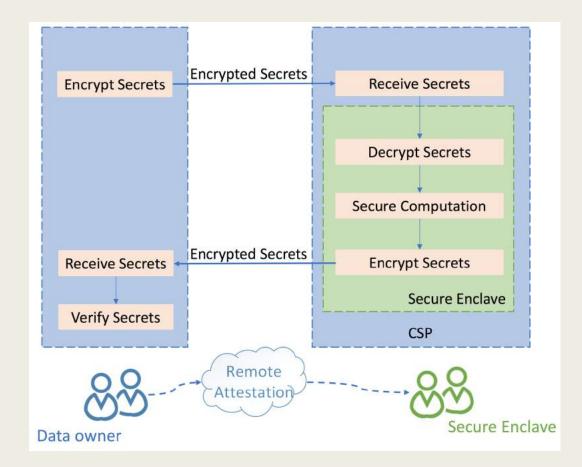
Motivation

 Individual genomic information tends to reveal sensitive personal information. Thus privacy concerns have posed challenges to outsource genomic data in an untrusted cloud environment •*Lin et. al. 2004 Science*: 75 or more SNPs (Single-nucleotide polymorphism) will be sufficient to identify a single person.

•*Gymrek et al. 2013 Science*: surnames can be recovered from personal genomes, linking Utah Residents with Northern and Western European Ancestry (CEU) and public genetic genealogy databases (Ysearch & SMGF).

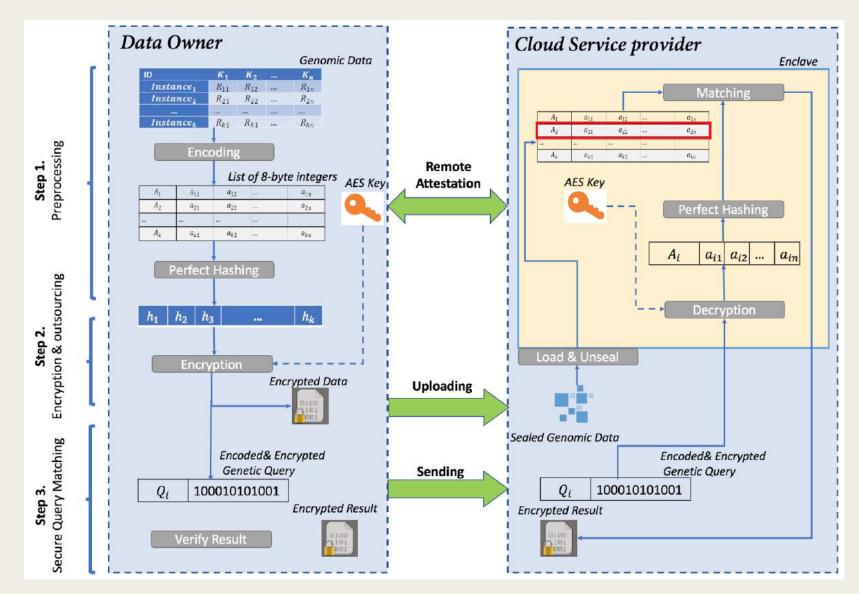
•*Lipper et.al. 2017 PNAS*: Prediction of human physical traits and demographic information.

Homer et al. 2008 PLOS Genetics: aggregated genome data (i.e., allele frequencies) can also be used for re-identifying an individual in a case group with a certain disease.


Our Solution

We present one of the first implementations of SGX based secure genetic testing framework to facilitate efficiently outsourced storage and computation.

The secure outsource storage is achieved through data sealing scheme within SGX framework, which is immune to replay attack.


We have taken into account the oblivious access protection by using 4KB page-wise data access model.

To improve the performance, we adopt a perfect hashing scheme to achieve O(1) complexity data access within each 4KB page.

Intel SGX Based Secure Genetic Testing Cloud

Our Solution

Workflows of the proposed PRESAGE framework, presented in three consecutive steps:

- 1. Preprocessing
- 2. Encryption and data outsourcing.
- 3. Secure Genetic Query Matching.

Experimental Studies

- Dataset: The dataset is presented in VCF format. And sizes of VCF datasets used in our experiments vary from 10,000 to 200,000 records.
- Experiment Environment: All of the experiments except the iDASH competition results are conducted on a Windows 10 SGX-enabled machine with i7 6820HK CPU and 48 GB memory. Both data owner and CSP were simulated on the aforementioned SGX machine. The iDASH competition results were evaluated on the Linux server with an Xeon Processor E3-1275 v5 and 64 GB memory.

Results

Comparison of querying performance among PRESAGE, HME-based method and plaintext implementation

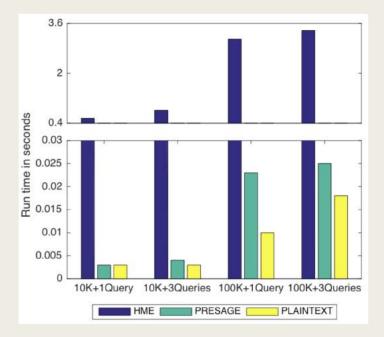


Table 1. The breakdown run time (in seconds) of the proposed PRESAGE framework

Record size	Plaintext	Encoded data	Sealed data	Enclave memory usage		
				1 query	3 queries	
10,000	0.55 MB	0.09 MB	0.12 MB	3.006 MB	3.006 MB	
50,000	2.59 MB	0.45 MB	0.59 MB	3.010 MB	3.010 MB	
100,000	5.26 MB	0.90 MB	1.15 MB	3.010 MB	3.010 MB	
200,000	10.5 MB	1.75 MB	2.31 MB	3.010 MB	3.010 MB	

Table 2. The data size and enclave memory consumption (in MB) for different datasets.

Record size	Attestation	SNPs coding	Hash generation	Enclave creation	Data sealing	Number of queries	
Record Size						1	3
10,000	0.121s	0.016s	1.130s	0.169s	0.094s	0.003s	0.003s
50,000	0.126s	0.080s	6.371s	0.173s	0.517s	0.012s	0.013s
100,000	0.124s	0.164s	13.473s	0.179s	0.980s	0.023s	0.025s
200,000	0.120s	0.309s	28.677s	0.171s	2.045s	0.043s	0.048s

Conclusion

- We proposed a secure outsourcing framework, which can defend malicious attack. To improve the efficiency, an minimal perfect hashing scheme has been incorporated
- Our experiment results demonstrated the efficiency of the proposed PRESAGE framework. For a VCF file with 200K records, the PRESAGE securely processes a query within 0.05 seconds, which includes file loading, unsealing and query matching. Compared with state-of-the-art HME solution, PRESAGE framework shows at least 120x performance gain.

Acknowledgements

- Feng Chen,
- Chenghong Wang,
- Wenrui Dai,
- Xiaoqian Jiang,
- Noman Mohammed,
- Md Momin Al Aziz,
- Md Nazmus Sadat,
- Kristin Lauter,
- Shuang Wang

Secure GWAS via Intel SGX

Motivation / Goal

Enable secure whole genome variant search among multiple individuals from multiple institutions

Institution A has VCF files from x_A individuals labeled case/control, Institution B has VCF files from x_B individuals labeled case/control, ...

Institutes don't want to share data, want to do GWAS on untrusted cloud

Requirements

Secure (Everything kept encrypted outside the SGX Enclave)

Fast

Challenges

Data is too large (iDASH dataset ~30GB, real-life much bigger)

SGX Enclave max size 128 MB

Linux allows 4GB paging – paging is extremely slow, typically many orders of magnitude slower than RAM

More data longer transfer, more data slower encryption/decryption

Solution Outline

Keep hash table inside the SGX enclave (server)

Filter and compress VCF files (Client(s))

Construct Enclave (Server)

Perform Remote Attestation (Both Parties Exchange Messages)

Receive Data, Update Hash Table (Server)

Calculate Top-K (K=10 for iDASH) SNPs wrt X² test (Server)

Allele Counting for X² Test

	GG	GT	TT	Total
Cases	r_0	<i>r</i> ₁	r_2	R
Controls	s ₀	<i>S</i> ₁	S ₂	S
Total	n ₀	<i>n</i> ₁	n ₂	N

	Observed	allele count	S
	G	т	Total
Cases	$2r_0 + r_1$	$r_1 + 2r_2$	2R
Controls	$2s_0 + s_1$	$s_1 + 2s_2$	25
Total	$2n_0 + n_1$	$n_1 + 2n_2$	2N

Expected allele counts						
G	т					
$2R(2n_0+n_1)/(2N)$	$2R(n_1+2n_2)/(2N)$					
$2S(2n_0+n_1)/(2N)$	$2S(n_1+2n_2)/(2N)$					

Chi-square test for independence of rows and columns (null hypothesis):

$$\sum \frac{(Obs - Exp)^2}{Exp} \sim \chi^2$$
 with 1 df

VCF (Variant Call Format)

##maal	id in 10	00genome	project	PC0351	0			
#CHROM	POS	ID	REF	ALT	QUAL	FILTER	TYPE	
1	13380	rs571093	408	C	G	100	PASS	heterozygous
1	15211	rs786018	09	Т	G	100	PASS	heterozygous
1	15820	rs269131	.5	G	Т	100	PASS	heterozygous
1	18849	rs533090	414	С	G	100	PASS	heterozygous
1	30923	rs806731		G	Т	100	PASS	heterozygous
1	49298	rs200943	160	Т	С	100	PASS	heterozygous
1	52238	rs269127	7	Т	G	100	PASS	heterozygous
1	55164	rs309127	4	C	A	100	PASS	heterozygous
1	62777	rs528401	.309	A	Т	100	PASS	heterozygous
1	69897	rs200676	709	Т	C	100	PASS	heterozygous
1	82343	rs563238	524	Т	С	100	PASS	heterozygous
1	83084	rs181193	408	Т	A	100	PASS	heterozygous
1	86331	rs115209	712	A	G	100	PASS	heterozygous

Filtering & Variable Length Encoding

[203760]	2182 ->	100010000110	12
[203761]	11414 ->	10110010010110	14
[203762]	2463 ->	100110011111	12
[203763]	2083 ->	100000100011	12
[203764]	1169 ->	10010010001	11
[203765]	20377 ->	100111110011001	15
[203766]	7717 ->	1111000100101	13
[203767]	15460 ->	11110001100100	14
[203768]	5258 ->	1010010001010	13
[203769]	8842 ->	10001010001010	14
[203770]	2846 ->	101100011110	12

Filtering VCF and Compressed Representation

- Only SNP "ID" and "TYPE" columns essential
- "QUAL" and "FILTER" can be removed during preprocessing
- "CHROM", "POS", "REF", "ALT" can all be found via "ID" from dbSNP
- ▶ Trim the "rs" in front of "ID", represent as integer
- Sort by "TYPE", so that we don't have to keep heterozygous/homozygous
- Keep a single integer to determine when "TYPE" changes

Variable Length Encoding

- ► Sort "ID"s, grouped by "TYPE"
- Keep only differences using the minimum number of bits needed
- Keep another small stream for bit-lengths, encoded by a Huffman Tree
- Example VCF Filtering/Compression: Actual VCF Size: 15,428,390 Bytes
- Heterozygous-Stream: 944,166 bits Homozygous-Stream: 428,921 bits Total Main Stream Size: 1,373,087 bits
- 5-bits/len Auxiliary Stream Size: 1,631,105 bits Huffman Encoded Auxiliary Stream Size: 1,070,458 bits
- Main Stream + Huffman Auxiliary Stream: 305,444 Bytes

Preliminary Results

1000 case / 1000 control. ~300K-350K SNPs per VCF, ~5.5M unique SNPs

SGX Enclave creation: 0.193381 seconds

Remote Attestation: 0.002464 seconds

Main Application: 49.990706 seconds

SGX Enclave destruction: 0.034888 seconds

Acknowledgements

- Can Kockan (Indiana University)
- Natnatee Dokmai (Indiana University)
- Oguzhan Kulekci (Istanbul Technical University)
- Steve Myers (Indiana University)
- The Cancer Genome Collaboratory
- Indiana University Precision Health Initiative